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A classical mathematical proof is constructed using pencil and paper. How-
ever, there are many ways in which computers may be used in a mathematical
proof. But ‘proof by computer’, or even the use of computers in the course of
a proof, is not so readily accepted (the December 2008 issue of the Notices of
the American Mathematical Society is devoted to formal proofs by computer).

In the following we introduce verification methods and discuss how they
can assist in achieving a mathematically rigorous result. In particular we
emphasize how floating-point arithmetic is used.

The goal of verification methods is ambitious. For a given problem it is
proved, with the aid of a computer, that there exists a (unique) solution of
a problem within computed bounds. The methods are constructive, and the
results are rigorous in every respect. Verification methods apply to data with
tolerances as well, in which case the assertions are true for all data within the
tolerances.

Non-trivial problems have been solved using verification methods. For ex-
ample, Tucker (1999) received the 2004 EMS prize awarded by the European
Mathematical Society for giving ‘a rigorous proof that the Lorenz attractor
exists for the parameter values provided by Lorenz. This was a long-standing
challenge to the dynamical system community, and was included by Smale in
his list of problems for the new millennium. The proof uses computer esti-
mates with rigorous bounds based on higher dimensional interval arithmetics.’
Also, Sahinidis and Tawaralani (2005) received the 2006 Beale–Orchard–Hays
Prize for their package BARON, which ‘incorporates techniques from auto-
matic differentiation, interval arithmetic, and other areas to yield an auto-
matic, modular, and relatively efficient solver for the very difficult area of
global optimization.’
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This review article is devoted to verification methods and consists of three
parts of similar length. In Part 1 the working tools of verification methods
are discussed, in particular floating-point and interval arithmetic; my findings
in Section 1.5 (Historical remarks) seem new, even to experts in the field.

In Part 2, the development and limits of verification methods for finite-
dimensional problems are discussed in some detail. In particular, we discuss
how verification is not working. For example, we give a probabilistic argument
that the so-called interval Gaussian elimination (IGA) does not work even for
(well-conditioned) random matrices of small size. Verification methods are
discussed for problems such as dense systems of linear equations, sparse linear
systems, systems of nonlinear equations, semi-definite programming and other
special linear and nonlinear problems, including M -matrices, finding simple
and multiple roots of polynomials, bounds for simple and multiple eigenvalues
or clusters, and quadrature. The necessary automatic differentiation tools to
compute the range of gradients, Hessians, Taylor coefficients, and slopes are
also introduced.

Concerning the important area of optimization, Neumaier (2004) gave in
his Acta Numerica article an overview on global optimization and constraint
satisfaction methods. In view of the thorough treatment there, showing the
essential role of interval methods in this area, we restrict our discussion to a
few recent, complementary issues.

Finally, in Part 3, verification methods for infinite-dimensional problems
are presented, namely two-point boundary value problems and semilinear
elliptic boundary value problems.

Throughout the article, many examples of the inappropriate use of interval
operations are given. In the past such examples contributed to the dubious
reputation of interval arithmetic (see Section 1.3), whereas they are, in fact,
simply a misuse.

One main goal of this review article is to introduce the principles of the
design of verification algorithms, and how these principles differ from those
for traditional numerical algorithms (see Section 1.4).

Many algorithms are presented in executable MATLAB/INTLAB code,
providing the opportunity to test the methods directly. INTLAB, the MAT-
LAB toolbox for reliable computing, was, for example, used by Bornemann,
Laurie, Wagon and Waldvogel (2004) in the solution of half of the problems
of the SIAM 10× 10-digit challenge by Trefethen (2002).
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PART ONE
Fundamentals

1. Introduction

It is not uncommon for parts of mathematical proofs to be carried out with
the aid of computers. For example,

• the non-existence of finite projective planes of order 10 by Lam, Thiel
and Swiercz (1989),

• the existence of Lyons’ simple group (of order 28 ·37 ·56 ·7·11·31·37·67)
by Gorenstein, Lyons and Solomon (1994),

• the uniqueness of Thompson’s group and the existence of O’Nan’s
group by Aschbacher (1994)

were proved with substantial aid of digital computers. Those proofs have in
common that they are based on integer calculations: no ‘rounding errors’
are involved. On the other hand,

• the proof of universality for area-preserving maps (Feigenbaum’s con-
stant) by Eckmann, Koch and Wittwer (1984),

• the verification of chaos in discrete dynamical systems by Neumaier
and Rage (1993),

• the proof of the double-bubble conjecture by Hass, Hutchings and
Schlafly (1995),

• the verification of chaos in the Lorenz equations by Galias and Zgliczyn-
ski (1998),

• the proof of the existence of eigenvalues below the essential spectrum of
the Sturm–Liouville problem by Brown, McCormack and Zettl (2000)

made substantial use of proof techniques based on floating-point arithmetic
(for other examples see Frommer (2001)). We do not want to philosophize
to what extent such proofs are rigorous, a theme that even made it into
The New York Times (Browne 1988). Assuming a computer is working
according to its specifications, the aim of this article is rather to present
methods providing rigorous results which, in particular, use floating-point
arithmetic.

We mention that there are possibilities for performing an entire math-
ematical proof by computer (where the ingenuity is often with the pro-
grammer). There are many projects in this direction, for example proof
assistants like Coq (Bertot and Castéran 2004), theorem proving programs
such as HOL (Gordon 2000), combining theorem provers and interval arith-
metic (Daumas, Melquiond and Muñoz 2005, Hölzl 2009), or the ambitious
project FMathL by Neumaier (2009), which aims to formalize mathematics
in a very general way.
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A number of proofs for non-trivial mathematical theorems have been car-
ried out in this way, among them the Fundamental Theorem of Algebra,
the impossibility of trisecting a 60◦ angle, the prime number theorem, and
Brouwer’s Fixed-Point Theorem.

Other proofs are routinely performed by computers, for example, integra-
tion in finite terms: for a given function using basic arithmetic operations
and elementary standard functions, Risch (1969) gave an algorithm for de-
ciding whether such an integral exists (and eventually computing it). This
algorithm is implemented, for example, in Maple (2009) or Mathematica
(2009) and solves any such problem in finite time. In particular the proof
of non-existence of an integral in closed form seems appealing.

1.1. Principles of verification methods

The methods described in this article, which are called verification methods
(or self-validating methods), are of quite a different nature. It will be dis-
cussed how floating-point arithmetic can be used in a rigorous way. Typical
problems to be solved include the following.

• Is a given matrix non-singular? (See Sections 1.6, 10.5, 10.8.)
• Compute error bounds for the minimum value of a function f : D ⊆

R
n → R. (See Sections 8, 11.6.)

• Compute error bounds for a solution of a system of nonlinear equations
f(x) = 0. (See Section 13.)

• Compute error bounds for the solution of an ordinary or partial differ-
ential equation. (See Sections 15, 16.)

Most verification methods rely on a good initial approximation. Although
the problems (and their solutions) are of different nature, they are solved
by the following common

Design principle of verification methods:
Mathematical theorems are formulated whose assumptions
are verified with the aid of a computer.

(1.1)

A verification method is the interplay between mathematical theory and
practical application: a major task is to derive the theorems and their as-
sumptions in such a way that the verification is likely to succeed. Mostly
those theorems are sufficient criteria: if the assumptions are satisfied, the
assertions are true; if not, nothing can be said.1 The verification of the as-
sumptions is based on estimates using floating-point arithmetic. Following
Hadamard, a problem is said to be well-posed if it has a unique solution
which depends continuously on the input data. A verification method solves

1 In contrast, methods in computer algebra (such as Risch’s algorithm) are never-failing :
the correct answer will be computed in finite time, and the maximally necessary com-
puting time is estimated depending on the input.
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a problem by proving existence and (possibly local) uniqueness of the solu-
tion. Therefore, the inevitable presence of rounding errors implies the

Solvability principle of verification methods:
Verification methods solve well-posed problems. (1.2)

As a typical example, there are efficient verification methods to prove the
non-singularity of a matrix (see Section 1.6); however, the proof of singu-
larity is outside the scope of verification methods because in every open
neighbourhood of a matrix there is a non-singular matrix.

There are partial exceptions to this principle, for example for integer
input data or, in semidefinite programming, if not both the primal and
dual problem have distance zero to infeasibility, see Section 14.2. After
regularizing an ill-posed problem, the resulting well-posed problem can be
treated by verification algorithms.

There will be many examples of these principles throughout the paper.
The ambitious goal of verification methods is to produce rigorous error
bounds, correct in a mathematical sense – taking into account all possible
sources of errors, in particular rounding errors.

Furthermore, the goal is to derive verification algorithms which are, for
certain classes of problems, not much slower than the best numerical algo-
rithms, say by at most an order of magnitude. Note that comparing com-
puting times is not really fair because the two types of algorithms deliver
results of different nature.

Part 1 of this review article, Sections 1 to 9, introduces tools for verifica-
tion methods. From a mathematical point of view, much of this is rather
trivial. However, we need this bridge between mathematics and computer
implementation to derive successful verification algorithms.

Given that numerical algorithms are, in general, very reliable, one may
ask whether it is necessary to compute verified error bounds for numerical
problems. We may cite William (Vel) Kahan, who said that ‘numerical
errors are rare, rare enough not to worry about all the time, yet not rare
enough to ignore them.’ Moreover, problems are not restricted to numerical
problems: see the short list at the beginning.

Besides this I think it is at the core of mathematics to produce true
results. Nobody would take it seriously that Goldbach’s conjecture is likely
to be true because in trillions of tests no counter-example was found.

Verification methods are to be sharply distinguished from approaches in-
creasing reliability. For example, powerful stochastic approaches have been
developed by La Porte and Vignes (1974), Vignes (1978, 1980), Stewart
(1990) and Chatelin (1988). Further, Demmel et al. (2004) have proposed
a very well-written linear system solver with improved iterative refinement,
which proves reliable in millions of examples. However, none of these ap-
proaches claims to produce always true results.
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As another example, I personally believe that today’s standard func-
tion libraries produce floating-point approximations accurate to at least
the second-to-last bit. Nevertheless, they cannot be used ‘as is’ in verifica-
tion methods because there is no proof of that property.2 In contrast, basic
floating-point operations +,−, ·, /,√·, according to IEEE 754, are defined
precisely , and are accurate to the last bit.3 Therefore verification meth-
ods willingly use floating-point arithmetic, not least because of its tremen-
dous speed.

1.2. Well-known pitfalls

We need designated tools for a mathematically rigorous verification. For
example, it is well known that a small residual of some approximate solu-
tion is not sufficient to prove that the true solution is anywhere near it.
Similarly, a solution of a discretized problem need not be near a solution of
the continuous problem.

Consider, for example, Emden’s equation −∆u=u2 with Dirichlet bound-
ary conditions on a rectangle with side lengths f and 1/f , which models
an actively heated metal band. It is theoretically known, by the famous re-
sult by Gidas, Ni and Nirenberg (1979) on symmetries of positive solutions
to semilinear second-order elliptic boundary value problems, that there is
a unique non-trivial centro-symmetric solution. However, the discretized
equation, dividing the edges into 64 and 32 intervals for f = 4, has the
solution shown in Figure 1.1. The height of the peak is normed to 4 in the
figure; the true height is about 278. The norm of the residual divided by
the norm of the solution is about 4 · 10−12.

Note this is a true solution of the discretized equation computed by a
verification method described in Section 13. Within the computed (narrow)
bounds, this solution of the nonlinear system is unique. The nonlinear
system has other solutions, among them an approximation to the solution
of the exact equation.

The computed true solution in Figure 1.1 of the discretized equation is
far from symmetric, so according to the theoretical result it cannot be near
the solution of the continuous problem. Methods for computing rigorous
inclusions of infinite-dimensional problems will be discussed in Sections 15
and 16.

It is also well known that if a computation yields similar approximations
in various precisions, this approximation need not be anywhere near the true

2 In Section 7 we briefly discuss how to take advantage of the fast floating-point standard
functions.

3 Admittedly assuming that the actual implementation follows the specification, a prin-
cipal question we will address again.
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Figure 1.1. True solution of discretized, but spurious
solution of the continuous Emden equation −∆u = u2.

solution. To show this I constructed the arithmetic expression (Rump 1994)

f = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
, (1.3)

with a = 77617 and b = 33096, in the mid-1980s for the arithmetic on IBM
S/370 mainframes. In single, double and extended precision4 corresponding
to about 8, 17 and 34 decimal digits, respectively, the results are

single precision f ≈ 1.172603 · · ·
double precision f ≈ 1.1726039400531 · · ·
extended precision f ≈ 1.172603940053178 · · · ,

(1.4)

whereas the true value is f = −0.827386 · · · = a/2b− 2.
The true sum of the main part in (1.3) (everything except the last frac-

tion) is −2 and subject to heavy cancellation. Accidentally, in all precisions
the floating-point sum of the main term cancels to 0, so the computed result
is just a/2b. Further analysis has been given by Cuyt, Verdonk, Becuwe and
Kuterna (2001) and Loh and Walster (2002).

4 Multiplications are carried out to avoid problems with exponential and logarithm.
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Almost all of today’s architectures follow the IEEE754 arithmetic stan-
dard. For those the arithmetic expression

f = 21 · b · b− 2 · a · a+ 55 · b · b · b · b− 10 · a · a · b · b+
a

2b
(1.5)

with a = 77617 and b = 33096 yields the same (wrong) results as in (1.4)
when computing in single, double and extended precision (corresponding to
about 7, 16 and 19 decimal digits precision, respectively). The reason is the
same as for (1.3), and the true value is again

f = −0.827386 · · · = a

2b
− 2.

1.3. The dubious reputation of interval arithmetic

One of the tools we use is interval arithmetic, which bears a dubious repu-
tation. Some exponents in the interval community contributed to a history
of overselling intervals as a panacea for problems in scientific computing. In
fact, like almost every tool, interval arithmetic is no panacea: if used in a
way it should not be used, the results may be useless. And there has been
a backlash: the result is that interval techniques have been under-utilized.

It is quite natural that claims were criticized, and the criticism was jus-
tified. However, only the critique of the claims and of inappropriate use of
interval arithmetic is appropriate; the extension of the criticism to interval
arithmetic as a whole is understandable, but overstated.

One of the aims of this article is to show that by using interval arithmetic
appropriately , certain non-trivial problems can be solved (see the abstract);
for example, in Bornemann et al. (2004), half of the problems of the SIAM
10×10-digit challenge by Trefethen (2002) were (also) solved using INTLAB.

Consider the following well-known fact:

The (real or complex) roots of x2 + px+ q = 0 are x1,2 = −p
2
±

√
p2

4
− q.
(1.6)

It is also well known that, although mathematically correct, this innocent
formula may produce poor approximations if not used or programmed ap-
propriately. For example, for p = 108 and q = 1, the MATLAB statements

>> p=1e8; q=1; x1tilde=-p/2+sqrt(p^2/4-q)

produce

x1tilde =
-7.4506e-009

The two summands−p/2 and +
√
p2/4− q are almost equal in magnitude,

so although using double-precision floating-point arithmetic corresponding
to 16 decimal figures of precision, the cancellation leaves no correct digits.
A naive user may trust the result because it comes without warning.
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All this is well known. It is also well known that one should compute the
root of smaller magnitude by q/(−p/2−

√
p2/4− q) (for positive p). Indeed

>> p=1e8; q=1; x1=q/(-p/2-sqrt(p^2/4-q)) (1.7)

produces correctly

x1 =
-1.0000e-008

We want to stress explicitly that we think that, in this example, interval
arithmetic is by no means better than floating-point arithmetic: an inclusion
of x1 computed by (1.6) yields the wide interval [−1.491,−0.745]·10−8. This
would be a typical example of inappropriate use of interval arithmetic.5 But
(1.7) yields a good, though not optimal inclusion for positive p.

We also want to stress that we are not arguing against the use of floating-
point arithmetic or even trying to imply that floating-point calculations are
not trustworthy per se. On the contrary, every tool should be used appro-
priately. In fact, verification methods depend on floating-point arithmetic
to derive rigorous results, and we will use its speed to solve larger problems.

Because it is easy to use interval arithmetic inappropriately, we find it
necessary to provide the reader with an easy way to check the claimed
properties and results. Throughout the article we give many examples using
INTLAB, developed and written by Rump (1999a), the MATLAB (2004)
toolbox for reliable computing. INTLAB can be downloaded freely for aca-
demic purposes, and it is entirely written in MATLAB. For an introduction,
see Hargreaves (2002). Our examples are given in executable INTLAB code;
we use Version 6.0.

Recently a book by Moore, Kearfott and Cloud (2009) on verification
methods using INTLAB appeared; Rohn (2009b) gives a large collection of
verification algorithms written in MATLAB/INTLAB.

1.4. Numerical methods versus verification methods

A main purpose of this article is to describe how verification methods work
and, in particular, how they are designed. There is an essential difference
from numerical methods. Derivations and estimates valid over the field of
real numbers frequently carry over, in some way, to approximate methods
using floating-point numbers.

Sometimes care is necessary, as for the pq-formula (1.6) or when solving
least-squares problems by normal equations; but usually one may concen-
trate on the real analysis, in both senses of the term. As a rule of thumb,

5 One might think that this wide interval provides information on the sensitivity of the
problem. This conclusion is not correct because the wide intervals may as well be
attributed to some overestimation by interval arithmetic (see Sections 5, 6, 8).
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straight replacement of real operations by floating-point operations is not
unlikely to work.

For verification methods it is almost the other way around, and many
examples of this will be given in this article. Well-known terms such as
‘convergence’ or even ‘distributivity’ have to be revisited. As a rule of
thumb, straight replacement of real operations by interval operations is
likely not to work.

We also want to stress that interval arithmetic is a convenient tool for
implementing verification methods, but is by no means mandatory. In fact,
in Sections 3 or 10.8.1 fast and rigorous methods will be described using
solely floating-point arithmetic (with rounding to nearest mode). However,
a rigorous analysis is sometimes laborious, whereas interval methods offer
convenient and simple solutions; see, for example, the careful analysis by
Viswanath (1999) to bound his constant concerned with random Fibonacci
sequences, and the elegant proof by Oliveira and de Figueiredo (2002) us-
ing interval operations. In Section 9.2 we mention possibilities other than
traditional intervals for computing with sets.

1.5. Historical remarks

Historically, the development of verification methods has divided into three
major steps.

First, interval operations were defined in a number of papers such as
Young (1931), Dwyer (1951) and Warmus (1956), but without proper round-
ing of endpoints and without any applications.

A second, major step was to solve problems using interval arithmetic.
In an outstanding paper, his Master’s Thesis at the University of Tokyo,
Sunaga (1956) introduced:

• the interval lattice, the law of subdistributivity, differentiation, gradi-
ents, the view of intervals as a topological group, etc.,

• infimum–supremum and midpoint-radius arithmetic theoretically and
with outward rounded bounds, real and complex including multi-dim-
ensional intervals,

• the inclusion property (5.16), the inclusion principle (5.17) and the sub-
set property,

• the centred form (11.10) as in Section 11.6, and subdivision to improve
range estimation,

• the interval Newton procedure (Algorithm 6.1),
• verified interpolation for accurate evaluation of standard functions,
• fast implementation of computer arithmetic by redundant number repre-

sentation, e.g., addition in two cycles (rediscovered by Avizienis (1961)),
• inclusion of definite integrals using Simpson’s rule as in Section 12, and
• the solution of ODEs with stepwise refinement.
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His thesis is (handwritten) in Japanese and difficult to obtain. Although
Sunaga (1958) summarized some of his results in English (see also Markov
and Okumura (1999)), the publication was in an obscure journal and his
findings received little attention.

Interval arithmetic became popular through the PhD thesis by Moore
(1962), which is the basis for his book (Moore 1966). Overestimation by
interval operations was significantly reduced by preconditioning proposed
by Hansen and Smith (1967).

Sunaga finished his thesis on February 29, 1956. As Moore (1999) states
that he conceived of interval arithmetic and some of its ramifications in the
spring of 1958, the priority goes to Sunaga.

Until the mid-1970s, however, either known error estimates (such as for
Simpson’s rule) were computed with rigour, or assumed inclusions were
refined, such as by Krawczyk (1969a). However, much non-trivial mathe-
matics was developed: see Alefeld and Herzberger (1974).

The existence tests proposed by Moore (1977) commence the third and
major step from interval to verification methods. Now fixed-point theorems
such as Brouwer’s in finite dimensions or Schauder’s in infinite dimensions
are used to certify that a solution to a problem exists within given bounds.
For the construction of these bounds an iterative scheme was introduced
in Rump (1980), together with the idea to include not the solution itself
but the error with respect to an approximate solution (see Section 10.5 for
details). These techniques are today standard in all kinds of verification
methods.

An excellent textbook on verification methods is Neumaier (1990). More-
over, the introduction to numerical analysis by Neumaier (2001) is very
much in the spirit of this review article: along with the traditional material
the tools for rigorous computations and verification methods are developed.
Based on INTLAB, some alternative verification algorithms for linear prob-
lems are described in Rohn (2005).

Besides INTLAB, which is free for academic use, ACRITH (1984) and
ARITHMOS (1986) are commercial libraries for algorithms with result ver-
ification. Both implement the algorithms in my habilitation thesis (Rump
1983).

1.6. A first simple example of a verification method

A very simple first example illustrates the Design principle (1.1) and the
Solvability principle (1.2), and some of the reasoning behind a verifica-
tion method.

Theorem 1.1. Let matrices A,R ∈ R
n×n be given, and denote by I the

n × n identity matrix. If the spectral radius �(I − RA) of I − RA is less
than 1, then A is non-singular.
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Proof. If A is singular, then I − RA has an eigenvalue 1, a contradiction.

If the assumption �(I − RA) < 1 is satisfied, then it is satisfied for all
matrices in a small neighbourhood of A. This corresponds to the Solv-
ability principle (1.2). Note that verification of singularity of a matrix
is an ill-posed problem: an arbitrarily small change of the input data may
change the answer.

Theorem 1.1 is formulated in such way that its assumption �(I−RA) < 1
is likely to be satisfied for an approximate inverse R of A calculated in
floating-point arithmetic. This is the interplay between the mathematical
theorem and the practical application.

Note that in principle the matrix R is arbitrary, so neither the ‘quality’
of R as an approximate inverse nor its non-singularity need to be checked.
The only assumption to be verified is that an upper bound of �(I −RA) is
less than one. If, for example, ‖I − RA‖∞ < 1 is rigorously verified, then
Theorem 1.1 applies. One way to achieve this is to estimate the individual
error of each floating-point operation; this will be described in the next
section.

Also note that all numerical experience should be used to design the
mathematical theorem, the assumptions to be verified, and the way to com-
pute R. In our particular example it is important to calculate R as a ‘left
inverse’ of A: see Chapter 13 in Higham (2002) (for the drastic difference of
the residuals ‖I −RA‖ and ‖I − AR‖ see the picture on the front cover of
his book). For the left inverse it is proved in numerical analysis that, even
for ill-conditioned matrices, it is likely that �(I −RA) < 1 is satisfied.

Given that this has been done with care one may ask: What is the validity
and the value of such a proof? Undoubtedly the computational part lacks
beauty, surely no candidate for ‘the Book’. But is it rigorous?

Furthermore, a proof assisted by a computer involves many components
such as the programming, a compiler, the operating system, the processor
itself, and more. A purely mathematical proof also relies on trust, however,
but at least every step can be checked.

The trust in the correctness of a proof assisted by a computer can be
increased by extensive testing. Verification algorithms allow a kind of testing
which is hardly possible for numerical algorithms. Suppose a problem is
constructed in such a way that the true solution is π. An approximate
solution p = 3.14159265358978 would hardly give any reason to doubt, but
the wrong ‘inclusion’ [3.14159265358978, 3.14159265358979] would reveal an
error. In INTLAB we obtain a correct inclusion of π by

>> P = 4*atan(intval(1))
intval P =
[ 3.14159265358979, 3.14159265358980]

or simply by P = intval(′pi′).
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1 000 000
− 999 999.9 3

0.1

Figure 1.2. Erroneous result on pocket calculators.

The deep mistrust of ‘computer arithmetic’ as a whole is nourished by
examples such as the following. For decades, floating-point arithmetic on
digital computers was not precisely defined. Even worse, until very recent
times the largest computers fell into the same trap as practically all cheap
pocket calculators6 still do today: calculating 1 000 000–999 999.93 results
in 0.1 rather than 0.07 on an 8-decimal-digit calculator. This is because
both summands are moved into the 8-digit accumulator, so that the last
digit 3 of the second input disappears.

The reason is that the internal accumulator has no extra digit, and the
effect is catastrophic: the relative error of a single operation is up to 100%.
For other examples and details see, for example, the classical paper by
Goldberg (1991).

It is a trivial statement that the floating-point arithmetic we are dealing
with has to be precisely defined for any rigorous conclusion. Unfortunately,
this was not the case until 1985. Fortunately this is now the case with the
IEEE 754 arithmetic standard.

The floating-point arithmetic of the vast majority of existing computers
follows this standard, so that the result of every (single) floating-point op-
eration is precisely defined. Note that for composite operations, such as dot
products, intermediate results are sometimes accumulated in some extended
precision, so that floating-point approximations may differ on different com-
puters. However, the error estimates to be introduced in the next section
remain valid. This allows mathematically rigorous conclusions, as will be
shown in the following.

2. Floating-point arithmetic

A floating-point operation approximates the given real or complex opera-
tions. For simplicity we restrict the following discussion to the reals. An
excellent and extensive treatment of various aspects of floating-point arith-
metic is Muller et al. (2009). For another, very readable discussion see
Overton (2001).

Let a finite subset F ⊆ R ∪ {−∞,+∞} be given, where ∞ ∈ F and
−F = F. We call the elements of F floating-point numbers. Moreover, set
realmax := max{|f | : f ∈ F ∩ R}.
6 8 or 10 or 12 decimal digits without exponent.



302 S. M. Rump

Figure 2.1. Definition of floating-point
arithmetic through rounding.

For a, b ∈ F, a floating-point operation a ◦̃ b : F × F → F with ◦ ∈
{+,−, ·, /} should approximate the real result a ◦ b. Using a rounding fl :
R → F, a natural way to define floating-point operations is

a ◦̃ b := fl(a ◦ b) for all a, b ∈ F. (2.1)

In other words, the diagram in Figure 2.1 commutes. Note that

a ◦̃ b = a ◦ b whenever a ◦ b ∈ F.

There are several ways to define a rounding fl(·). One natural way is
rounding to nearest , satisfying

|fl(x)−x| = min{|f−x| : f ∈ F} for all x ∈ R with |x| ≤ realmax. (2.2)

Real numbers larger than realmax in absolute value require some special at-
tention. Besides this, such a rounding is optimal in terms of approximating
a real number by a floating-point number. Note that the only freedom is the
result of fl(x) for x being the midpoint between two adjacent floating-point
numbers. This ambiguity is fixed by choosing the floating-point number
with zero last bit in the mantissa.7

This defines uniquely the result of all floating-point operations in rounding
to nearest mode, and (2.1) together with (2.2) is exactly the definition of
floating-point arithmetic in the IEEE 754 standard in rounding to nearest
mode. For convenience we denote the result of a floating-point operation by
fl(a ◦ b). In terms of minimal relative error the definition is best possible.

In the following we use only IEEE754 double-precision format, which
corresponds to a relative rounding error unit of u := 2−53. It follows for
operations ◦ ∈ {+,−, ·, /} that

a ◦ b = fl(a ◦ b) · (1 + ε) + δ with |ε| ≤ u, |δ| ≤ 1
2
η, (2.3)

where η := 2−1074 denotes the underflow unit. Furthermore, we always have
εδ=0 and, since F=−F, taking an absolute value causes no rounding error.

For addition and subtraction the estimates are particularly simple, be-
cause the result is exact if underflow occurs:

a ◦ b = fl(a ◦ b) · (1 + ε) with |ε| ≤ u for ◦ ∈ {+,−}. (2.4)

7 Called ‘rounding tie to even’.
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Such inequalities can be used to draw rigorous conclusions, for example, to
verify the assumption of Theorem 1.1.8

In order to verify ‖I −RA‖∞ < 1 for matrices R,A ∈ F
n×n, (2.3) can be

applied successively. Such estimates, however, are quite tedious, in partic-
ular if underflow is taken into account. Much simplification is possible, as
described in Higham (2002), (3.2) and Lemma 8.2, if underflow is neglected,
as we now see.

Theorem 2.1. Let x, y ∈ F
n and c ∈ F be given, and denote by fl(

∑
xi)

and fl(c−xT y) the floating-point evaluation of
∑n

i=1 xi and c−xT y, respec-
tively, in any order. Then∣∣fl(∑xi

)
−

∑
xi

∣∣ ≤ γn−1

∑
|xi|, (2.5)

where γn := nu
1−nu . Furthermore, provided no underflow has occurred,

|fl(c− xT y)− (c− xT y)| ≤ γn|x|T |y|, (2.6)

where the absolute value is taken entrywise.

To obtain a computable bound for the right-hand side of (2.6), we abbre-
viate e := |x|T |y|, ẽ := fl(|x|T |y|) and use (2.6) to obtain

|e| ≤ |ẽ|+ |ẽ− e| ≤ |ẽ|+ γn|e|, (2.7)

and therefore

|fl(c− xT y)− (c− xT y)| ≤ γn|e| ≤
γn

1− γn
|ẽ| = 1

2
γ2n · fl(|x|T |y|). (2.8)

This is true provided no over- or underflow occurs. To obtain a computable
bound, the error in the floating-point evaluation of γn has to be estimated
as well. Denote

γ̃n := fl(n · u/(1− n · u)).

Then for nu < 1 neither N := fl(n ·u) nor fl(1−N) causes a rounding error,
and (2.3) implies

γn ≤ γ̃n+1.

Therefore, with (2.8), estimating the error in the multiplication by e and
observing that division by 2 causes no rounding error, we obtain

|fl(c− xT y)− (c− xT y)| ≤ fl
(

1
2
γ̃2n+2 · ẽ

)
with ẽ = fl(|x|T |y|). (2.9)

8 The following sample derivation of floating-point estimates serves a didactic purpose;
in Section 5 we show how to avoid (and improve) these tedious estimates.
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Applying this to each component of I −RA gives the entrywise inequality

|fl(I −RA)− (I −RA)| ≤ fl
((

1
2
γ̃2n+2

)
· E

)
=: β with E := fl(|R||A|).

(2.10)
Note that the bound is valid for all R,A ∈ F

n×n with (2n+2)u < 1 provided
that no underflow has occurred. Also note that β is a computable matrix
of floating-point entries.

It is clear that one can continue like this, eventually obtaining a com-
putable and rigorous upper bound for c̄ := ‖I − RA‖∞. Note that c̄ < 1
proves (R and) A to be non-singular. The proof is rigorous provided that
(2n+2)u < 1, that no underflow occurred, and that the processor, compiler,
operating system, and all components involved work to their specification.

These rigorous derivations of error estimates for floating-point arithmetic
are tedious. Moreover, for each operation the worst-case error is (and has
to be) assumed. Both will be improved in the next section.

Consider the model problem with an n × n matrix An based on the fol-
lowing pattern for n = 3:

An =


1 1

4
1
7

1
2

1
5

1
8

1
3

1
6

1
9


 for n = 3. (2.11)

Now the application of Theorem 1.1 is still possible but even more involved
since, for example, 1

3 is not a floating-point number. Fortunately there is an
elegant way to obtain rigorous and sharper error bounds using floating-point
arithmetic, even for this model problem with input data not in F.

Before we come to this we discuss a quite different but very interesting
method for obtaining not only rigorous but exact results in floating-point
arithmetic.

3. Error-free transformations

In the following we consider solely rounding to nearest mode, and we assume
that no overflow occurs. As we have seen, the result of every floating-point
operation is uniquely defined by (2.1). This not only allows error estimates
such as (2.3), but it can be shown that the error of every floating-point
operation is itself a floating-point number:9

x = fl(a ◦ b) ⇒ x+ y = a ◦ b with y ∈ F (3.1)

for a, b ∈ F and ◦ ∈ {+,−, ·}. Remarkably, the error y can be calculated
using only basic floating-point operations. The following algorithm by
Knuth (1969) does it for addition.

9 For division, q, r ∈ F for q := fl(a/b) and a = qb + r, and for the square root x, y ∈ F

for x = fl(
√

a) and a = x2 + y.
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Algorithm 3.1. Error-free transformation of the sum of two floating-
point numbers:

function [x, y] = TwoSum(a, b)
x = fl(a+ b)
z = fl(x− a)
e = fl(x− z)
f = fl(b− z)
y = fl(fl(a− e) + f)

Theorem 3.2. For any two floating-point numbers a, b ∈ F, the computed
results x, y of Algorithm 3.1 satisfy

x = fl(a+ b) and x+ y = a+ b. (3.2)

Algorithm 3.1 needs six floating-point operations. It was shown by Dekker
(1971) that the same can be achieved in three floating-point operations if
the input is sorted by absolute value.

Algorithm 3.3. Error-free transformation of the sum of two sorted float-
ing-point numbers:

function [x, y] = FastTwoSum(a, b)
x = fl(a+ b)
y = fl(fl(a− x) + b)

Theorem 3.4. The computed results x, y of Algorithm 3.3 satisfy (3.2)
for any two floating-point numbers a, b ∈ F with |a| ≥ |b|.

One may prefer Dekker’s Algorithm 3.3 with a branch and three opera-
tions. However, with today’s compiler optimizations we note that Knuth’s
Algorithm 3.1 with six operations is often faster: see Section 9.1.

Error-free transformations are a very powerful tool. As Algorithms 3.1
and 3.3 transform a pair of floating-point numbers into another pair, Algo-
rithm 3.5 transforms a vector of floating-point numbers into another vector
without changing the sum.

Algorithm 3.5. Error-free vector transformation for summation:

function q = VecSum(p)
π1 = p1

for i = 2 : n
[πi, qi−1] = TwoSum(pi, πi−1)

end for
qn = πn

As in Algorithm 3.1, the result vector q splits into an approximation qn
of

∑
pi and into error terms q1...n−1 without changing the sum.
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We use the convention that for floating-point numbers pi, fl↑
(∑

pi

)
de-

notes their recursive floating-point sum starting with p1.

Theorem 3.6. For a vector p ∈ F
n of floating-point numbers let q ∈ F

n

be the result computed by Algorithm 3.5. Then
n∑

i=1

qi =
n∑

i=1

pi. (3.3)

Moreover,

qn = fl↑
( n∑

i=1

pi

)
and

n−1∑
i=1

|qi| ≤ γn−1

n∑
i=1

|pi|, (3.4)

where γk := ku/(1− ku) using the relative rounding error unit u.

Proof. By Theorem 3.2 we have πi + qi−1 = pi + πi−1 for 2 ≤ i ≤ n.
Summing up yields

n∑
i=2

πi +
n−1∑
i=1

qi =
n∑

i=2

pi +
n−1∑
i=1

πi (3.5)

or
n∑

i=1

qi = πn +
n−1∑
i=1

qi =
n∑

i=2

pi + π1 =
n∑

i=1

pi. (3.6)

Moreover, πi = fl(pi + πi−1) for 2 ≤ i ≤ n, and qn = πn proves qn =
fl↑

(∑
pi

)
. Now (2.3) and (2.5) imply

|qn−1| ≤ u|πn| ≤ u(1 + γn−1)
n∑

i=1

|pi|.

It follows by an induction argument that
n−1∑
i=1

|qi| ≤ γn−2

n−1∑
i=1

|pi|+ u(1 + γn−1)
n∑

i=1

|pi| ≤ γn−1

n∑
i=1

|pi|. (3.7)

This is a rigorous result using only floating-point computations. The
vector p is transformed into a new vector of n − 1 error terms q1, . . . , qn−1

together with the floating-point approximation qn of the sum
∑
pi.

A result ‘as if’ computed in quadruple precision can be achieved by adding
the error terms in floating-point arithmetic.

Theorem 3.7. For a vector p ∈ F
n of floating-point numbers, let q ∈ F

n

be the result computed by Algorithm 3.5. Define

e := fl
(n−1∑

i=1

qi

)
, (3.8)
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where the summation can be executed in any order. Then∣∣∣∣qn + e−
n∑

i=1

pi

∣∣∣∣ ≤ γn−2γn−1

n∑
i=1

|pi|. (3.9)

Further,

|s̃− s| ≤ u|s|+ γ2
n

n∑
i=1

|pi|, (3.10)

for s̃ := fl(qn + e) and s :=
∑n

i=1 pi.

Proof. Using (3.3), (2.5) and (3.4), we find∣∣∣∣qn + e−
n∑

i=1

pi

∣∣∣∣ =
∣∣∣∣e− n−1∑

i=1

qi

∣∣∣∣ ≤ γn−2

n−1∑
i=1

|qi| ≤ γn−2γn−1

n∑
i=1

|pi| (3.11)

and, for some |ε| ≤ u,

|fl(qn + e)− s| = |εs+ (qn + e− s)(1 + ε)| ≤ u|s|+ γ2
n

n∑
i=1

|pi| (3.12)

by (2.4) and (3.11).

Putting things together, we arrive at an algorithm using solely double-
precision floating-point arithmetic but achieving a result of quadruple-pre-
cision quality.

Algorithm 3.8. Approximating some
∑
pi in double-precision arithmetic

with quadruple-precision quality:

function res = Sums(p)
π1 = p1; e = 0
for i = 2 : n

[πi, qi−1] = TwoSum(pi, πi−1)
e = fl(e+ qi−1)

end for
res = fl(πn + e)

This algorithm was given by Neumaier (1974) using FastTwoSum with
a branch. At the time he did not know Knuth’s or Dekker’s error-free
transformation, but derived the algorithm in expanded form. Unfortunately,
his paper is written in German and did not receive a wide audience.

Note that the pair (πn, e) can be used as a result representing a kind of
simulated quadruple-precision number. This technique is used today in the
XBLAS library (see Li et al. (2002)).
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Similar techniques are possible for the calculation of dot products. There
are error-free transformations for computing x+ y = a · b, again using only
floating-point operations. Hence a dot product can be transformed into a
sum without error provided no underflow has occurred.

Once dot products can be computed with quadruple-precision quality,
the residual of linear systems can be improved substantially, thus improv-
ing the quality of inclusions for the solution. We come to this again in
Section 10.4. The precise dot product was, in particular, popularized by
Kulisch (1981).

4. Directed roundings

The algebraic properties of F are very poor. In fact it can be shown under
general assumptions that for a floating-point arithmetic neither addition nor
multiplication can be associative.

As well as rounding to nearest mode, IEEE 754 allows other rounding
modes,10 fldown,flup : R → F, namely rounding towards −∞ mode and
rounding towards +∞ mode:

fldown(a ◦ b) := max{f ∈ F : f ≤ a ◦ b},
flup(a ◦ b) := min{f ∈ F : a ◦ b ≤ f}. (4.1)

Note that the inequalities are always valid for all operations ◦ ∈ {+,−, ·, /},
including possible over- or underflow, and note that ±∞ may be a result
of a floating-point operation with directed rounding mode. It follows for all
a, b ∈ F and ◦ ∈ {+,−, ·, /} that

fldown(a ◦ b) = flup(a ◦ b) ⇐⇒ a ◦ b ∈ F, (4.2)

a nice mathematical property. On most computers the operations with
directed roundings are particularly easy to execute: the processor can be
set into a specific rounding mode such as to nearest, towards −∞ or towards
+∞, so that all subsequent operations are executed in this rounding mode
until the next change.

Let x, y ∈ F
n be given. For 1 ≤ i ≤ n we have

si := fldown(xi · yi) ≤ xi · yi ≤ flup(xi · yi) =: ti.

Note that si, ti ∈ F but xi ·yi ∈ R and, in general, xi ·yi /∈ F. It follows that

d1 := fldown
(∑

si

)
≤ xT y ≤ flup

(∑
ti
)

=: d2, (4.3)

where fldown(
∑
si) indicates that all additions are performed with rounding

towards −∞ mode. The summations may be executed in any order.

10 IEEE 754 also defines rounding towards zero. This is the only rounding mode available
on cell processors, presumably because it is fast to execute and avoids overflow.
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The function setround in INTLAB performs the switching of the round-
ing mode, so that for two column vectors x, y ∈ F

n the MATLAB/INTLAB
code

setround(-1) % rounding downwards mode
d1 = x’*y
setround(1) % rounding upwards mode
d2 = x’*y

calculates floating-point numbers d1, d2 ∈ F with d1 ≤ xT y ≤ d2. Note that
these inequalities are rigorous, including the possibility of over- or underflow.
This can be applied directly to verify the assumptions of Theorem 1.1. For
given A ∈ F

n×n, consider the following algorithm.

Algorithm 4.1. Verification of the non-singularity of the matrix A:

R = inv(A); % approximate inverse
setround(-1) % rounding downwards mode
C1 = R*A-eye(n); % lower bound for RA-I
setround(1) % rounding upwards mode
C2 = R*A-eye(n); % upper bound for RA-I
C = max(abs(C1),abs(C2)); % upper bound for |RA-I|
c = norm( C , inf ); % upper bound for ||RA-I||_inf

We claim that c < 1 proves that A and R are non-singular.

Theorem 4.2. Let matrices A,R ∈ F
n×n be given, and let c be the quan-

tity computed by Algorithm 4.1. If c < 1, then A (and R) are non-singular.

Proof. First note that

fldown(a− b) ≤ a− b ≤ flup(a− b) for all a, b ∈ F.

Combining this with (4.3) and observing the rounding mode, we obtain

C1 ≤ RA− I ≤ C2

using entrywise inequalities. Taking absolute value and maximum do not
cause a rounding error, and observing the rounding mode when computing
the∞-norm together with �(I−RA) ≤ ‖I−RA‖∞ = ‖ |RA−I| ‖∞ ≤ ‖C‖∞
proves the statement.

Theorem 4.2 is a very simple first example of a verification method.
According to the Design principle of verification methods (1.1),
c < 1 is verified with the aid of the computer. Note that this proves non-
singularity of all matrices within a small neighbourhood Uε(A) of A.

According to the Solvability principle of verification methods
(1.2), it is possible to verify non-singularity of a given matrix, but not sin-
gularity. An arbitrarily small perturbation of the input matrix may change
the answer from yes to no. The verification of singularity excludes the use
of estimates: it is only possible using exact computation.
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Note that there is a trap in the computation of C1 and C2: Theorem 4.2 is
not valid when replacing R ∗ A− eye(n) by eye(n)− R ∗ A in Algorithm 4.1.
In the latter case the multiplication and subtraction must be computed in
opposite rounding modes to obtain valid results.

This application is rather simple, avoiding tedious estimates. However, it
does not yet solve our model problem (2.11) where the matrix entries are not
floating-point numbers. An elegant solution for this is interval arithmetic.

5. Operations with sets

There are many possibilities for defining operations on sets of numbers,
most prominently the power set operations. Given two sets X,Y ⊆ R, the
operations ◦ : PR× PR → PR with ◦ ∈ {+,−, ·, /} are defined by

X ◦ Y := {x ◦ y : x ∈ X, y ∈ Y }, (5.1)

where 0 /∈ Y is assumed in the case of division. The input sets X,Y may
be interpreted as available information of some quantity. For example,
π ∈ [3.14, 3.15] and e ∈ [2.71, 2.72], so, with only this information at hand,

d := π − e ∈ [0.42, 0.44] (5.2)

is true and the best we can say. The operations are optimal, the result is
the minimum element in the infimum lattice {PR,∩,∪}. However, this may
no longer be true when it comes to composite operations and if operations
are executed one after the other. For example,

d+ e ∈ [3.13, 3.16] (5.3)

is again true and the best we can say using only the information d ∈
[0.42, 0.44]; using the definition of d reveals d+ e = π.

5.1. Interval arithmetic

General sets are hardly representable. The goal of implementable operations
suggests restricting sets to intervals. Ordinary intervals are not the only
possibility: see Section 9.2.

Denote11 the set of intervals {[x, x] : x, x ∈ R, x ≤ x} by IR. Then,
provided 0 /∈ Y in the case of division, the result of the power set operation
X ◦ Y for X,Y ∈ IR is again an interval, and we have

[x, x]◦[y, y] := [min(x◦y, x◦y, x◦y, x◦y), max(x◦y, x◦y, x◦y, x◦y)]. (5.4)

For a practical implementation it becomes clear that in most cases it can
be decided a priori which pair of the bounds x, x, y, y lead to the lower and

11 A standardized interval notation is proposed by Kearfott et al. (2005).
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upper bound of the result. In the case of addition and subtraction this is
particularly simple, namely

X + Y = [x+ y, x+ y],

X − Y = [x− y, x− y].
(5.5)

For multiplication and division there are case distinctions for X and Y
depending on whether they are entirely positive, entirely negative, or contain
zero. In all but one case, namely where both X and Y contain zero for
multiplication, the pair of bounds is a priori clear. In that remaining case
0 ∈ X and 0 ∈ Y we have

[x, x] · [y, y] := [min(x ◦ y, x ◦ y), max(x ◦ y, x ◦ y)]. (5.6)

As before, we assume from now on that a denominator interval does
not contain zero. We stress that all results remain valid without this as-
sumption; however, various statements become more difficult to formulate
without giving substantial new information.

We do not discuss complex interval arithmetic in detail. Frequently com-
plex discs are used, as proposed by Sunaga (1958). They were also used,
for example, by Gargantini and Henrici (1972) to enclose roots of polyno-
mials. The implementation is along the lines of real interval arithmetic. It
is included in INTLAB.

5.2. Overestimation

A measure for accuracy or overestimation by interval operations is the di-
ameter d(X) := x− x. Obviously,

d(X + Y ) = d(X) + d(Y ); (5.7)

the diameter of the sum is the sum of the diameters. However,

d(X − Y ) = (x− y)− (x− y) = d(X) + d(Y ), (5.8)

so the diameter of the sum and the difference of intervals cannot be smaller
than the minimum of the diameters of the operands. In particular,

d(X −X) = 2 · d(X). (5.9)

This effect is not due to interval arithmetic but occurs in power set opera-
tions as well: see (5.2) and (5.3).

This can also be seen when writing an interval X in Gaussian notation
x±∆x as a number with a tolerance:

(x±∆x) + (y ±∆y) = (x+ y)± (∆x+ ∆y),
(x±∆x)− (y ±∆y) = (x− y)± (∆x+ ∆y).

(5.10)

That means the absolute errors add, implying a large relative error if the
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result is small in absolute value. This is exactly the case when catastrophic
cancellation occurs. In contrast, neglecting higher-order terms,

(x±∆x) · (y ±∆y) ∼ x · y ± (∆x · |y|+ |x|∆y),
x±∆x
y ±∆y

=
(x±∆x) · (y ∓∆y)

y2 −∆y2
∼ x

y
± ∆x · |y|+ |x|∆y

y2
,

(5.11)

so that
∆(x · y)
|x · y| =

∆(x/y)
|x/y| =

∆x
|x| +

∆y
|y| . (5.12)

This means that for multiplication and division the relative errors add. Sim-
ilarly, not much overestimation occurs in interval multiplication or division.

Demmel, Dumitriu, Holtz and Koev (2008) discuss in their recent Acta
Numerica paper how to evaluate expressions to achieve accurate results
in linear algebra. One major sufficient (but not necessary) condition is
the No inaccurate cancellation principle (NIC). It allows multipli-
cations and divisions, but additions (subtractions) only on data with the
same (different) sign, or on input data.

They use this principle to show that certain problems can be solved with
high accuracy if the structure is taken into account. A distinctive example is
the accurate computation of the smallest singular value of a Hilbert matrix
of, say, dimension n = 100 (which is about 10−150) by looking at it as a
Cauchy matrix.

We see that the No inaccurate cancellation principle (NIC) means
precisely that replacement of every operation by the corresponding inter-
val operation produces an accurate result. This is called ‘naive interval
arithmetic’, and it is, in general, bound to fail (see Section 6).

In general, if no structure in the problem is known, the sign of summands
cannot be predicted. This leads to the

Utilize input data principle of verification methods:
Avoid re-use of computed data; use input data where possible. (5.13)

Our very first example in Theorem 1.1 follows this principle: the verification
of �(I −RA) < 1 is based mainly on the input matrix A.

Once again we want to stress that the effect of data dependency is not
due to interval arithmetic but occurs with power set operations as well.
Consider two enclosures X = [3.14, 3.15] and Y = [3.14, 3.15] for π. Then

X − Y = [−0.01,+0.01] or X/Y = [0.996, 1.004]

is (rounded to 3 digits) the best we can deduce using the given information;
but when adding the information that both X and Y are inclusions for π,
the results can be sharpened into 0 and 1, respectively.
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5.3. Floating-point bounds

Up to now the discussion has been theoretical. In a practical implementation
on a digital computer the bounds of an interval are floating-point numbers.
Let IF ⊂ IR denote the set {[x, x] : x, x ∈ F, x ≤ x}. We define a rounding
� : IR → IF by

�([x, x]) := [fldown(x),flup(x)], (5.14)

and operations�◦ : IF× IF → IF for X,Y ∈ IF and ◦ ∈ {+,−, ·, /} by

X�◦ Y := �(X ◦ Y ). (5.15)

Fortunately this definition is straightforward to implement on today’s com-
puters using directed roundings, as introduced in Section 4. Basically, defi-
nitions (5.4) and (5.6) are used where the lower (upper) bound is computed
with the processor switched into rounding downwards (upwards) mode.
Note that the result is best possible.

There are ways to speed up a practical implementation of scalar interval
operations. Fast C++ libraries for interval operations are PROFIL/BIAS by
Knüppel (1994, 1998). Other libraries for interval operations include Intlib
(Kearfott, Dawande, Du and Hu 1992) and C-XSC (Klatte et al. 1993).
The main point for this article is that interval operations with floating-point
bounds are rigorously implemented.

For vector and matrix operations a fast implementation is mandatory, as
discussed in Section 9.1.

5.4. Infinite bounds

We defined −∞ and +∞ to be floating-point numbers. This is particularly
useful for maintaining (5.4) and (5.14) without nasty exceptions in the case
of overflow. Also, special operations such as division by a zero interval can
be consistently defined, such as by Kahan (1968).

We feel this is not the main focus of interest, and requires too much detail
for this review article. We therefore assume from now on that all intervals
are finite. Once again, all results (for example, computed by INTLAB)
remain rigorous, even in the presence of division by zero or infinite bounds.

5.5. The inclusion property

For readability we will from now on denote interval quantities by bold let-
ters X,Y, . . . . Operations between interval quantities are always interval
operations, as defined in (5.15). In particular, an expression such as

R = (X + Y)−X

is to be understood as

Z = X + Y and R = Z−X,
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where both addition and subtraction are interval operations. If the order of
execution is ambiguous, assertions are valid for any order of evaluation.

We will frequently demonstrate examples using INTLAB. Even without
familiarity with the concepts of MATLAB it should not be difficult to fol-
low our examples; a little additional information is given where necessary
to understand the INTLAB code.

INTLAB uses an operator concept with a new data type intval. For
f, g ∈ F, the ‘type casts’ intval(f) or infsup(f, g) produce intervals [f, f]
or [f, g], respectively. In the latter case f ≤ g is checked. Operations be-
tween interval quantities and floating-point quantities f are possible, where
the latter are automatically replaced by the interval [f, f]. Such a quantity
is called a point interval. With this the above reads

R = (X+Y)-X;

as executable INTLAB code, where X and Y are interval quantities.
The operator concept with the natural embedding of F into IF implies

that an interval operation is applied if at least one of the operands is of
type intval. Therefore,

X1 = 1/intval(3);
X2 = intval(1)/3;
X3 = intval(1)/intval(3);

all have the same result, namely [fldown(1/3),flup(1/3)]. The most impor-
tant property of interval operations is the

Inclusion property:
Given X,Y ∈ IF, ◦ ∈ {+,−, ·, /} and any x, y ∈ R

with x ∈ X, y ∈ Y, it is true that x ◦ y ∈ X ◦Y.
(5.16)

For a given arithmetic expression f(x1, . . . , xn), we may replace each op-
eration by its corresponding interval operation. Call that new expression
F (x1, . . . , xn) the natural interval extension of f . Using the natural em-
bedding xi ∈ Xi with Xi := [xi, xi] ∈ IF for i ∈ {1, . . . , n}, it is clear that
f(x1, . . . , xn) ∈ f(X1, . . . ,Xn) for xi ∈ F. More generally, applying the
Inclusion property (5.16) successively, we have the

Inclusion principle:
xi ∈ R,Xi ∈ IF and xi ∈ Xi =⇒ f(x1, . . . , xn) ∈ F (X1, . . . ,Xn). (5.17)

These remarkable properties, the Inclusion property (5.16) and the In-
clusion principle (5.17), due to Sunaga (1956, 1958) and rediscovered
by Moore (1962), allow the estimation of the range of a function over a
given domain in a simple and rigorous way. The result will always be true;
however, much overestimation may occur (see Sections 6, 8 and 11.6).
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Concerning infinite bounds, (5.17) is also true when using INTLAB; how-
ever, it needs some interpretation. An invalid operation such as division
by two intervals containing zero leads to the answer NaN. This symbol
Not a Number is the MATLAB representation for invalid operations such
as ∞−∞. An interval result NaN is to be interpreted as ‘no information
available’.

6. Naive interval arithmetic and data dependency

One may try to replace each operation in some algorithm by its correspond-
ing interval operation to overcome the rounding error problem. It is a true
statement that the true value of each (intermediate) result is included in the
corresponding interval (intermediate) result. However, the direct and naive
use of the Inclusion principle (5.17) in this way will almost certainly fail
by producing wide and useless bounds.

Consider f(x) = x2 − 2. A Newton iteration xk+1 = xk − (x2
k − 2)/2xk

with starting value x0 not too far from
√

2 will converge rapidly. After
at most 5 iterations, any starting value in [1, 2] produces a result with 16
correct figures, for example, in executable MATLAB code:

>> x=1; for i=1:5, x = x - (x^2-2)/(2*x), end
x = 1.500000000000000
x = 1.416666666666667
x = 1.414215686274510
x = 1.414213562374690
x = 1.414213562373095

Now consider a naive interval iteration starting with X0 := [1.4, 1.5] in
executable INTLAB code.

Algorithm 6.1. Naive interval Newton procedure:

>> X=infsup(1.4,1.5);
>> for i=1:5, X = X - (X^2-2)/(2*X), end
intval X =
[ 1.3107, 1.5143]
intval X =
[ 1.1989, 1.6219]
intval X =
[ 0.9359, 1.8565]
intval X =
[ 0.1632, 2.4569]
intval X =
[ -12.2002, 8.5014]

Rather than converging, the interval diameters increase, and the results
are of no use. This is another typical example of inappropriate use of interval
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arithmetic. The reason for the behaviour is data dependency. This is not
due to interval arithmetic, but, as has been noted before, the results would
be the same when using power set operations. It corresponds to the rules
of thumb mentioned in Section 1.4.

Instead of an inclusion of

{x− (x2 − 2)/(2x) : x ∈ Xk}, (6.1)

naive interval arithmetic computes in the kth iteration an inclusion of

{ξ1 − (ξ22 − 2)/(2ξ3) : ξ1, ξ2, ξ3 ∈ Xk}. (6.2)

To improve this, the Newton iteration is to be redefined in an appropriate
way, utilizing the strengths of interval arithmetic and diminishing weak-
nesses (see Moore (1966)).

Theorem 6.2. Let a differentiable function f : R → R, X = [x1, x2] ∈ IR

and x̃ ∈ X be given, and suppose 0 /∈ f ′(X). Using interval operations,
define

N(x̃,X) := x̃− f(x̃)/f ′(X). (6.3)

If N(x̃,X) ⊆ X, then X contains a unique root of f . If N(x̃,X) ∩X = ∅,
then f(x) �= 0 for all x ∈ X.

Proof. If N(x̃,X) ⊆ X, then

x1 ≤ x̃− f(x̃)/f ′(ξ) ≤ x2 (6.4)

for all ξ ∈ X. Therefore 0 /∈ f ′(X) implies

(f(x̃) + f ′(ξ1)(x1 − x̃)) · (f(x̃) + f ′(ξ2)(x2 − x̃)) ≤ 0

for all ξ1, ξ2 ∈ X, and in particular f(x1) · f(x2) ≤ 0. So there is a root of
f in X, which is unique because 0 /∈ f ′(X).

Suppose x̂ ∈ X is a root of f . By the Mean Value Theorem there exists
ξ ∈ X with f(x̃) = f ′(ξ)(x̃ − x̂) or x̂ = x̃ − f(x̃)/f ′(ξ) ∈ N(x̃,X), and the
result follows.

For a univariate function f it is not difficult to certify that an interval
contains a root of f . However, to verify that a certain interval does not
contain a root is not that simple or obvious.

Theorem 6.2 and in particular (6.3) are suitable for application of interval
arithmetic. Let X be given. The assumptions of Theorem 6.2 are verified
as follows.

(1) Let F and Fs be interval extensions of f and f ′, respectively.
(2) If Fs(X) does not contain zero, then f ′(x) �= 0 for x ∈ X.
(3) If x̃− F(x̃)/Fs(X) ∈ X, then X contains a unique root of f .
(4) If

{
x̃− F(x̃)/Fs(X)

}
∩X = ∅, then X contains no root of f .
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Step (1) is directly solved by writing down the functions in INTLAB. We
then define the computable function

N(x̃,X) := x̃− F(x̃)/Fs(X) : F× IF → IF, (6.5)

where all operations are interval operations with floating-point bounds.
Then always N(x̃,X) ⊆ N(x̃,X), so that the assumptions of Theorem 6.2
can be confirmed on the computer.

After verifying step (2) for the initial interval X := [1, 2], we obtain the
following results:

>> X=infsup(1,2);
for i=1:4, xs=intval(mid(X)); X = xs - (xs^2-2)/(2*X), end

intval X =
[ 1.37499999999999, 1.43750000000001]
intval X =
[ 1.41406249999999, 1.41441761363637]
intval X =
[ 1.41421355929452, 1.41421356594718]
intval X =
[ 1.41421356237309, 1.41421356237310]

Starting with the wide interval [1, 2], an accurate inclusion of the root of
f is achieved after 4 iterations. Note that the type cast of xs to type
intval by xs = intval(mid(X)) is mandatory. Using xs = mid(X) instead,
the computation of xs^2-2 would be performed in floating-point arithmetic.
Moreover, as in Theorem 6.2, xs does not need to be the exact midpoint
of X; only xs ∈ X is required. This is true for the mid-function. Note that[
x̃−F(x̃)/F(X)

]
∩X contains the root of f as well; in our example, however,

it makes no difference.
Also note that all output of INTLAB is rigorous. This means that a

displayed lower bound is less than or equal to the computed lower bound,
and similarly for the upper bound.

For narrow intervals we have found another form of display useful:

>> format _; X=infsup(1,2);
for i=1:4, xs=intval(mid(X)); X = xs - (xs^2-2)/(2*X), end

intval X =
[ 1.37499999999999, 1.43750000000001]
intval X =

1.414___________
intval X =

1.41421356______
intval X =

1.41421356237309

A true inclusion is obtained from the display by subtracting and adding 1
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to the last displayed digit. For example, a true inclusion of the last iterate
is

[1.41421356237308, 1.41421356237310].

This kind of display allows us to grasp easily the accuracy of the result. In
this particular case it also illustrates the quadratic convergence.

7. Standard functions and conversion

The concepts of the previous section can be directly applied to the evaluation
of standard functions. For example,

sin(x) ∈ x− x3/3! + x5/5! +
x7

7!
[−1, 1] (7.1)

is a true statement for all x ∈ R. A remarkable fact is that (7.1) can be
applied to interval input as well:

sin(x) ∈
{
X−X3/3! + X5/5! +

X7

7!
[−1, 1]

}
∩ [−1, 1] (7.2)

is a true statement for all x ∈ X. Of course, the quality of such an inclusion
may be weak. Without going into details, we mention that, among others,
for

– exp, log, sqrt
– sin, cos, tan, cot and their inverse functions
– sinh, cosh, tanh, coth and their inverse functions

(7.3)

interval extensions are implemented in INTLAB. Much care is necessary to
choose the right approximation formulas, and in particular how to evaluate
them. In consequence, the computed results are mostly accurate to the last
digit. The algorithms are based on a table-driven approach carefully using
the built-in functions at specific sets of points and using addition theorems
for the standard functions. When no addition theorem is available (such as
for the inverse tangent), other special methods have been developed.

Those techniques for standard functions are presented in Rump (2001a)
with the implementational details. In particular a fast technique by Payne
and Hanek (1983) was rediscovered to evaluate sine and cosine accurately
for very large arguments. All standard functions in (7.3) are implemented
in INTLAB also for complex (interval) arguments, for point and for interval
input data. The implementation of the latter follows Börsken (1978).

Other techniques for the implementation of elementary standard functions
were given by Braune (1987) and Krämer (1987). Interval implementations
for some higher transcendental functions are known as well, for example for
the Gamma function by Krämer (1991).
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7.1. Conversion

Some care is necessary when converting real numbers into intervals. When
executing the statement

X = intval(3.5)

MATLAB first converts the input ‘3.5’ into the nearest floating-point num-
ber f , and then defines X to be the point interval [f, f ]. In this case in-
deed f = 3.5, because 3.5 has a finite binary expansion and belongs to F.
However, the statement

X = intval(0.1)

produces a point interval not containing the real number 0.1 /∈ F. The prob-
lem is that the routine intval receives as input the floating-point number
nearest to the real number 0.1, because conversion of 0.1 ∈ R into F has
already taken place. To overcome this problem, the conversion has to be
performed by INTLAB using

X = intval(’0.1’)

The result is an interval truly containing the real number 0.1. Similar
considerations apply to transcendental numbers. For example,

>> Y = sin(intval(pi))
intval Y =
1.0e-015 *

[ 0.12246467991473, 0.12246467991474]

is an inclusion of sin(f), where f is the nearest floating-point number to π.
Note that Y does not contain zero. The command

>> sin(intval(’pi’))
intval ans =
1.0e-015 *

[ -0.32162452993533, 0.12246467991474]

uses an inclusion of the transcendental number π as argument for the sine,
hence the inclusion of the sine must contain zero. The statement sin(4 ∗
atan(intval(1))) would also work.

8. Range of a function

The evaluation of the interval extension of a function results in an inclu-
sion of the range of the function over the input interval. Note that this is
achieved by a mere evaluation of the function, without further knowledge
such as extrema, Lipschitz properties and the like. Sometimes it is possible
to rearrange the function to improve this inclusion.
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Figure 8.1. Graph of f(x) = x2 − 4x.

8.1. Rearrangement of a function

Consider a simple model function

f(x) := x2 − 4x over X := [1, 4]. (8.1)

From the graph of the function in Figure 8.1, the range is clearly {f(x) :
x ∈ X} = [−4, 0]. The straightforward interval evaluation yields

>> X = infsup(1,4); X^2-4*X
intval ans =
[ -15.0000, 12.0000]

Now f(x) = x(x− 4), so

>> X = infsup(1,4); X*(X-4)
intval ans =
[ -12.0000, 0.0000]

is an inclusion as well. But also f(x) = (x − 2)2 − 4, and this yields the
exact range:

>> X = infsup(1,4); (X-2)^2-4
intval ans =
[ -4.0000, 0.0000]

Note that the real function f : R → R is manipulated, not the interval
extension F : IF → IF. Manipulation of expressions including intervals
should be done with great care; for example, only (X+Y) ·Z ⊆ X ·Y+X ·Z
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is valid. Also note that the interval square function is the interval extension
of s(x) := x2 and is therefore evaluated by

X2 :=
[
X ·X

]
∩ [0,∞], (8.2)

the bounds of which are easily calculated by a case distinction, whether X
is completely positive, negative or contains zero.

It is not by accident that f(x) = (x − 2)2 − 4 yields the exact range of
f(X) (neglecting possible overestimation by directed rounding). In fact,
it achieves this for every input interval X. The reason is that the input
interval occurs only once, so that there is no dependency. Because each
individual operation computes the best-possible result, this is true for the
final inclusion as well (apparently this was known to Sunaga (1956); it was
formulated in Moore (1966, p. 11)).

Theorem 8.1. Let a function f : R
n → R be given, and let F : IR

n → IR

be its interval extension. If f is evaluated by some arithmetic expression
and each variable xi occurs at most once, then

F(X1, . . . ,Xn) = {f(x1, . . . , xn) : xi ∈ Xi for 1 ≤ i ≤ n}, (8.3)

for all X1, . . . ,Xn ∈ IF.

Unfortunately there seems to be no general recipe for how to rearrange
a function in order to minimize overestimation. It may well be that in one
expression the input variables occur less often than in another, and yet the
overestimation is worse.

8.2. Oscillating functions

Consider more involved functions. One may expect that for functions with
many extrema, an overestimation of the range is more likely. Consider

f(x) := sin
(

2x2

√
coshx

− x
)
− atan(4x+ 1) + 1 over X := [0, 4]. (8.4)

The graph of this function is shown in Figure 8.2. One verifies that the
minimum and maximum are achieved near x1 = 0.408 and x2 = 1.556,
so that

{f(x) : x ∈ X} ⊆ [−0.2959, 0.5656] (8.5)

is a true statement and best possible in 4 digits. The direct interval evalu-
ation yields

>> f = inline(’sin(2*x^2/sqrt(cosh(x))-x)-atan(4*x+1)+1’);
Y = f(infsup(0,4))

intval Y =
[ -1.5121, 1.2147]
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Figure 8.2. Graph of f(x) as defined in (8.4).

which is a true result with some overestimation. Next we change the func-
tion by simply replacing the sine function by the hyperbolic sine:

g(x) := sinh
(

2x2

√
coshx

− x
)
− atan(4x+ 1) + 1 over X := [0, 4]. (8.6)

The graph of this function is shown in Figure 8.3. One might think that the
range of this function would be even simpler to estimate. The best-possible
inclusion to 4 digits is

{g(x) : x ∈ X} ⊆ [−0.2962, 6.7189], (8.7)

whereas the interval evaluation yields the gross overestimate

>> g = inline(’sinh(2*x^2/sqrt(cosh(x))-x)-atan(4*x+1)+1’);
format short e
Y = g(infsup(0,4))

intval Y =
[ -2.7802e+001, 3.9482e+013]

Note that the interval evaluation of the standard functions is practically
best possible. The reason is once again data dependency. The function

h1(x) :=
2x2

√
cosh x

is not too far from h2(x) := x over [0, 4], so that the range of the argument
h3(x) := h1(x) − x of the hyperbolic sine is h3([0, 4]) ⊆ [−0.1271, 2.6737].



Verification methods 323

Figure 8.3. Graph of g(x) as defined in (8.6).

However, {
2ξ21√

cosh ξ2
− ξ3 : ξi ∈ [0, 4]

}
= [−4, 32].

This overestimate is due to data dependency, and the result using power set
operations is the same. Then this overestimate is amplified by the hyperbolic
sine and produces the observed gross overestimate for the function g defined
in (8.6).

In contrast, in the first function f defined in (8.4), the sine function
reduces the overestimate, since the output of the interval sine function is
always bounded by [−1, 1]. We come to this again in Section 11.6.

8.3. Improved range estimation

Let a real function f : R → R and its interval extension F : IF → IF be
given. For a given X = [a, b] ∈ IF, we always have f(X) ⊆ F(X), so that
0 /∈ F(X) implies that f has no roots in X. Applying this to an interval
extension Fs : IF → IF of f ′ means that f is monotone on X provided
0 /∈ Fs(X). In this case

0 /∈ Fs(X) ⇒ f(X) = {f(x) : x ∈ X} = f(a)∪ f(b). (8.8)

Hence a straightforward way to improve the range estimation f(X) is to
apply (8.8) if 0 /∈ Fs(X) is true, and otherwise to apply a bisection scheme.
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Table 8.1. Range inclusion for g as in (8.6), using bisection
scheme and (8.8).

Bisection depth Function evaluations Range

4 31 [−0.6415, 19.1872]
5 53 [−0.4864, 11.2932]
6 73 [−0.3919, 8.7007]
7 93 [−0.3448, 7.6441]
8 115 [−0.3206, 7.1664]
9 137 [−0.3084, 6.9389]

10 159 [−0.3023, 6.8280]

true range [−0.2962, 6.7189]
fminbnd 19 ]− 0.2961, 6.7189[

Doing this for the function g defined in (8.6) for different bisection depths
yields the results displayed in Table 8.1.

In the second-to-last row the true range is displayed. So, as may be
expected, with increasing bisection depth the range estimation improves at
the price of more function evaluations.

Note that, despite possible overestimation, interval evaluation has two ad-
vantages. First, the estimates come without further knowledge of the func-
tion, and second, all range estimates are rigorous. Using pure floating-point
arithmetic, this rigour is hardly achievable. We may use some nonlinear
function minimization, for example the function fminbnd in MATLAB. Ac-
cording to the specification it attempts to find a local minimizer of a given
function within a specified interval. Applying this to g and −g yields the
result displayed in the last row of Table 8.1. Obviously, with a few function
evaluations the true range is found.

Note that in principle the local minimization approach finds an inner in-
clusion of the true range,12 and it may occur that the global minimum within
the given interval is missed. Applying the same scheme to the function f
as in (8.4), we obtain the results displayed in Table 8.2.

Again, increasing bisection depth increases the accuracy of the range esti-
mation. However, the minimization function fminbnd fails to find the global
minimum near 0.4 and underestimates the true range. The displayed bounds
are calculated using the default values. Setting the maximum number of
function evaluations by fminbnd to 1000 and the termination tolerance on

12 Provided function evaluations are rigorous.
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Table 8.2. Range inclusion for f as in (8.4), using bisection
scheme and (8.8).

Bisection depth Function evaluations Range

4 31 [−1.0009, 0.6251]
5 59 [−0.5142, 0.5920]
6 91 [−0.3903, 0.5772]
7 101 [−0.3442, 0.5717]
8 113 [−0.3202, 0.5686]
9 127 [−0.3081, 0.5671]

10 137 [−0.3020, 0.5664]

true range [−0.2959, 0.5656]
fminbnd 18 ]− 0.0424, 0.5656[

the minimizer and the function value to 10−12 increases the number of func-
tion evaluations to 21 but produces the same result.

The approach described in this section (as well as the Newton iteration
in Theorem 6.2) requires an interval extension of the derivative. It is not
satisfactory for this to be provided by a user. In fact, the range of the first
and higher derivatives in the univariate as well as the multivariate case can
be computed automatically. This will be described in Section 11.

Moreover, in Section 11.6 derivatives and slopes will be used to improve
the range estimation for narrow input intervals; see also Section 13.1. Fur-
ther background information, together with a challenge problem, is given
by Neumaier (2010).

9. Interval vectors and matrices

In order to treat multivariate functions, we need to define interval vectors
and matrices. An interval vector X may be defined as an n-tuple with
interval entries such that

X := {x ∈ R
n : xi ∈ Xi for 1 ≤ i ≤ n}.

Obviously an interval vector is the Cartesian product of (one-dimensional)
intervals. There is another, equivalent definition using the partial ordering
≤ on R

n, namely X = [x, x] for x, x ∈ R
n with

X = {x ∈ R
n : x ≤ x ≤ x}, (9.1)

where comparison of vectors and matrices is always to be understood com-
ponentwise. Both representations are useful. Since they are equivalent
we use IR

n to denote interval vectors. The set of interval matrices IR
n×n
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is defined similarly. The lower and upper bound of an interval quantity X
is denoted by X and X, respectively.

Interval operations extend straightforwardly to vectors and matrices by
replacement of each individual (real) operation by its corresponding interval
operation. For example,

A =
(

[−2, 1] −2
[0, 2] [1, 3]

)
and X =

(
[−3, 2]

4

)
yield AX =

(
[−12,−2]
[−2, 16]

)
.

(9.2)
As before, we use the natural embedding of R into IR. This concept of
point intervals extends to vectors and matrices as well, and the names point
vector or point matrix are used, respectively. Note that for A ∈ IR

n×n and
X ∈ IR

n the inclusion property (5.16) implies

A ∈ A, x ∈ X ⇒ Ax ∈ AX. (9.3)

As before, we assume interval operations to be used if at least one operand
is an interval quantity. Next consider two special cases. First, let an interval
matrix A ∈ IR

n×n and a vector x ∈ R
n be given. Then Theorem 8.1 implies

Ax = {Ax : A ∈ A}. (9.4)

That means there is no overestimation; the interval operation and the power
set operation coincide. The reason is that the components Aij of A, the
only occurring intervals, are used only once in Ax.

Secondly, consider a real matrix A ∈ R
n×n and an interval vector X ∈

IR
n. Now in the interval multiplication AX each interval component Xi is

used n times, so in general the interval product AX will be an overestimation
by the power set operation:

{Ax : x ∈ X} ⊆ AX. (9.5)

However, for the computation of each component (AX)i of the result, each
interval component Xj is used only once, so componentwise there is no
overestimation. In other words, the resulting interval vectorAX is narrowest
possible, that is,

AX =
⋂
{Z ∈ IR : Ax ∈ Z, x ∈ X} =: hull

(
{Ax : x ∈ X}

)
. (9.6)

This is called the interval hull. Consider

A =
(

2 −1
1 2

)
and X =

(
[2, 3]
[1, 3]

)
. (9.7)

Then Figure 9.1 illustrates the result of the power set operation {Ax : x ∈
X} and the interval operation AX. The power set operation is a linear
transformation of the axis-parallel rectangle X.

This creates a pitfall. Consider a system of linear equations Ax = b
for A ∈ R

n×n and b, x ∈ R
n. Using an approximate solution x̃ computed
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Figure 9.1. Power set and interval product for A and X as in (9.7).

by some standard algorithm, define an interval vector X containing x̃, for
example X := [1 − e, 1 + e] · x̃ for some small 0 < e ∈ R. Because AX is
narrowest possible, one might conclude that X contains the solution A−1b
if b ∈ AX. It is true that Ax ∈ AX for all x ∈ X; however,

∀ y ∈ AX ∃ x ∈ X : y = Ax is not true (9.8)

(see Figure 9.1 for the data in (9.7)). For example, x := (4, 8)T ∈ AX =
([1, 5], [4, 9])T , but A−1x = (3.2, 2.4)T /∈ X.

9.1. Performance aspects

The definition of interval vector and matrix operations by replacement of
each individual (real) operation by its corresponding interval operation is
theoretically useful, but it implies a severe performance impact. This is be-
cause on today’s architectures dramatic speed-up is obtained by instruction-
level parallelism and by avoiding cache-misses. On the contrary, branches,
in particular, may slow down an algorithm significantly.

Our definition of the product of two interval matrices A,B ∈ IF
n×n,

say, implies that in the inner loop an interval product AikBkj has to be
computed. This requires at least two branches to decide whether the input
intervals are non-negative, non-positive or contain zero, and two switches
of the rounding mode to compute the lower and upper bound. In the worst
case of two intervals both containing zero in the interior, four products must
be computed in total.
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Table 9.1. Performance in GFLOPs for LAPACK matrix
multiplication (DGEMM), Gaussian elimination with
partial pivoting (DGETRF) and with total pivoting
(DGETC2); one branch is counted as one FLOP.

n DGEMM DGETRF DGETC2

2000 121 68 0.20
4000 151 114 0.15
6000 159 128 0.12
8000 163 142 0.14

10000 166 150 0.11

But a pure counting of floating-point operations does not show how
well a code can be optimized, and in particular it hides the disastrous
effect of branches. As an example of how branches may slow down a
computation we refer to the well-known LAPACK package described in
Anderson et al. (1995). All routines are well written by the best experts in
the field. We compare the routines DGEMM for multiplying two matrices,
Gaussian elimination with partial pivoting DGETRF and Gaussian elimi-
nation with total pivoting DGETC2. For Table 9.1 we count each addition,
multiplication and branch as 1 FLOP and display the GFLOPs achieved for
all routines. The environment is a PC with four Quad-Core AMD Opteron
8393 SE with 3.1 GHz clock speed, thus 16 cores in total. Each core may
execute up to four operations in parallel, so that the peak performance is
64× 3.1 = 198.4 GFLOPs.13

Note that if all codes could be equally well optimized and there were no
time penalty for branches, all GFLOP counts in Table 9.1 would be equal.
However, we observe a slow-down by a factor well over 1000 for dimension
n = 10 000. Similarly a significant slow-down is observed when implement-
ing the interval matrix product according to the theoretical definition by
case distinctions.

For a fast implementation of interval vector and matrix operations, Rump
(1999b) analysed that the conversion into midpoint-radius form is useful. We
defined an interval by its left and right bound. Equivalently, we may use

X = 〈m, r〉 := {x ∈ R : m− r ≤ x ≤ m+ r}, (9.9)

and similarly for vectors and matrices using the componentwise partial or-
dering in R

n and R
n×n. Sometimes the midpoint-radius is advantageous

13 Thanks to Takeshi Ogita for performing the tests.
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because the minimum radius is not restricted to the distance of adjacent
floating-point numbers, but tiny radii are possible as well.

First, consider the product A·B of an interval matrix A = [A,A] ∈ IF
m×k

and a real matrixB ∈ F
k×n. SettingmA := 0.5(A+A) and rA := 0.5(A−A),

a little thought reveals

A ·B = 〈mA, rA〉 ·B = 〈mA ·B, rA · |B|〉. (9.10)

For the computer implementation note that both the conversion of the in-
terval matrix A into midpoint-radius form and the products mA · B and
rA · |B| are subject to rounding errors. Fortunately this problem can be
solved in a simple way.

Algorithm 9.1. Fast matrix multiplication [Ainf, Asup] · B:
setround(1)
mA = 0.5*(Ainf+Asup);
rA = mA - Ainf;
rC = rA*abs(B);
Csup = mA*B + rC;
setound(-1)
Cinf = mA*B - rC;

The elegant conversion from left and right bound to midpoint-radius
form is due to Oishi (1998). Algorithm 9.1 ensures that, for the computed
floating-point matrices mA and rA,

mA− rA ≤ Ainf ≤ Asup ≤ mA + rA. (9.11)

Moreover, abs(B) = |B| because F = −F, and the setting of the rounding
mode yields

0 ≤ rA · |B| ≤ rC (9.12)

for the floating-point matrices rA, B and rC, so that

Cinf ≤ mA·|B|−rC ≤ mA·|B|+rC ≤ Csup and A·B ⊆ [Cinf, Csup]. (9.13)

Note that not only are various branches and switchings of the rounding mode
omitted but the main work reduces to 3 multiplications of real matrices.
Therefore, the very fast BLAS routines can be used, which are again much
faster than an ordinary 3-loop implementation.

Secondly, consider the product A ·B of two interval matrices A = [mA−
rA,mA+ rA] ∈ IF

m×k and B = [mB − rB,mB + rB] ∈ IF
k×n. Again it is

easy to see that

A ·B ⊆ [mC − rC,mC + rC] for (9.14)
mC := mA ·mB and rC := rA · (|mB|+ rB) + |mA| · rB.

Note that now there is some overestimation due to the fact that rB is used
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Table 9.2. Computing time for real-interval and interval-interval
matrix multiplication in C, floating-point multiplication normed to 1.

Real × interval matrix Interval × interval matrix
Dimension Traditional (9.10) Traditional (9.14)

100 11.3 3.81 110.2 5.36
200 12.4 3.53 131.1 4.94
500 12.3 3.35 134.2 4.60

1000 20.1 3.25 140.0 4.45
1500 23.2 3.18 142.6 4.32
2000 23.6 3.14 144.6 4.25

twice in the computation of rC, and the product of the midpoints mA ·mB
is not the midpoint of the product A · B. For example, [1, 3] · [5, 9] =
[5, 27] is the usual interval product identical to the power set operation, but
〈2, 1〉 · 〈7, 2〉 = 〈14, 13〉 = [1, 27] using (9.14).

However, something strange happens, namely that the computed quanti-
ties [mC−rC,mC+rC] are sometimes more narrow than A·B, contradicting
(9.14). This is due to outward rounding, as in the following example:

[2.31, 2.33] · [3.74, 3.76] = [8.6394, 8.7608] ⊆ [8.63, 8.77] (9.15)

is the best-possible result in a 3-digit decimal arithmetic, whereas (9.14)
yields

〈2.32, 0.01〉 · 〈3.75, 0.01〉 = 〈8.7, 0.01 · (3.75 + 0.01) + 2.32 · 0.01〉
= 〈8.7, 0.0608〉, (9.16)

which has a 13% smaller diameter than the result in (9.14).
An implementation of (9.14) along the lines of Algorithm 9.1 is straight-

forward. Note that the main costs are 4 real matrix multiplications, which
are, as before, very fast using BLAS routines.

We first compare the new approaches in (9.10) and (9.14) with a C imple-
mentation along the traditional lines. With the time for one ordinary BLAS
matrix multiplication in floating-point normed to 1, Table 9.2 displays the
timing for different dimensions.14 It clearly shows the advantage of the new
approach, which almost achieves the theoretical ratio.

This method, as in (9.10) and (9.14), is in particular mandatory for a
MATLAB implementation: although much effort has been spent on dimin-
ishing the effects of interpretation, loops may still slow down a computation

14 Thanks to Viktor Härter for performing the tests.
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Table 9.3. Computing time for interval matrix multiplication
in INTLAB, floating-point multiplication normed to 1.

Dimension 3-loop Rank-1 update Mid-rad by (9.14)

50 610659.1 81.3 6.4
100 79.6 5.2
200 100.5 4.7
500 173.2 4.3

1000 261.7 4.1

significantly, in particular when user-defined variables such as intervals are
involved. The fastest way to compute a tight inclusion without overestima-
tion, as in (9.14), seems to be via rank-1 updates. Both possibilities, tightest
and fast inclusions, are available in INTLAB via a system variable.15

Table 9.3 shows the timing for the product of two interval matrices for a
standard 3-loop approach, for the tight inclusion using rank-1 updates and
the fast inclusion via (9.14). The computing time for an ordinary product
of two real matrices of the same size is again normed to 1.

As can be seen, the overhead for the tight inclusion increases with the
dimension, whereas the time ratio for the fast inclusion approaches the
theoretical factor 4. The standard 3-loop approach is unacceptably slow
even for small dimensions.

As in the scalar case, interval matrices are a convenient way to deal with
matrices not representable in floating-point arithmetic. For example, Algo-
rithm 9.2 produces an inclusion A of the matrix in our model problem (2.11).

Algorithm 9.2. Computation of an interval matrix A ∈ IF
n×n containing

the real matrix as in (2.11):

A = zeros(n);
for i=1:n, for j=1:n
A(i,j) = intval(1)/(i+(j-1)*n);

end, end

Then, for example, the matrix product A ∗ A surely contains the square of
the original matrix in (2.11). In Section 10 we discuss how to compute an
inclusion of the solution of a system of linear equations, in particular when
the matrix is not representable in floating-point arithmetic.

15 This is done by intvalinit(’SharpIVmult’) and intvalinit(’FastIVmult’), and
applies only if both factors are thick interval quantities, i.e., the lower and upper
bound do not coincide.
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9.2. Representation of intervals

The Cartesian product of a one-dimensional interval suggests itself as a
representation of interval vectors. Although operations are easy to define
and fast to execute, there are drawbacks.

In particular, there is no ‘orientation’: the boxes are always parallel to
the axes which may cause overestimation. The simplest example is the 2-
dimensional unit square rotated by 45: the best inclusion increases the radii
by a factor

√
2. This is known as the wrapping effect, one of the major

obstacles when integrating ODEs over a longer time frame.
As an alternative to interval vectors, Beaumont (2000) considers oblique

boxes QX for orthogonal Q, where the product is not executed but Q and
X are stored separately.

Another approach involving ellipsoids is defined by Neumaier (1993) (see
also Kreinovich, Neumaier and Xiang (2008)), where the ellipsoid is the
image of the unit ball by a triangular matrix; for interesting applications
see Ovseevich and Chernousko (1987).

Andrade, Comba and Stolfi (1994) define an affine arithmetic, apparently
used in other areas, by representing an interval by x0 +

∑
xiEi for xi ∈ R

and Ei = [−1, 1]. Often this seems efficient in combatting overestimation;
see de Figueiredo and Stolfi (2004).

For each representation, however, advantages are counterbalanced by in-
creased computational costs for interval operations.
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PART TWO

Finite-dimensional problems

10. Linear problems

The solution of systems of linear equations is one of the most common of
all numerical tasks. Therefore we discuss various aspects of how to com-
pute verified error bounds, from dense systems to large systems, input data
with tolerances, estimation of the quality to NP-hard problems. Almost-
linear problems such as the algebraic eigenvalue problem are discussed in
Section 13.4. We start by showing that a naive approach is bound to fail.

10.1. The failure of the naive approach: interval Gaussian
elimination (IGA)

The most commonly used algorithm for a general dense linear system Ax = b
is factoring A by Gaussian elimination. From an LU decomposition, com-
puted with partial pivoting, the solution can be directly computed.

Once again it is a true statement that replacement of each operation
in this process by its corresponding interval operation produces a correct
inclusion of the result – if not ended prematurely by division by an interval
containing zero. This naive approach is likely to produce useless results for
almost any numerical algorithm, and Gaussian elimination is no exception.

Unfortunately, it is still not fully understood why Gaussian elimination
works so successfully in floating-point arithmetic. A detailed and very in-
teresting argument was given by Trefethen and Schreiber (1990). They
investigate in particular why partial pivoting suffices despite worst-case ex-
ponential growth factors. Their model can be used to shed some light on
the failure of IGA.

Let A(1) := A ∈ R
n×n be given, and denote by A(k) the modified matrix

before step k of Gaussian elimination (we assume the rows of A are already
permuted so that the partial pivots are already in place). Then A(k) =
L(k) ·A(k−1) with L(k)

ik = ϕ
(k)
i := −A(k)

ik /A
(k)
kk for k + 1 ≤ i ≤ n, or

A
(k+1)
ij = A

(k)
ij − ϕ

(k)
i A

(k)
kj for k + 1 ≤ i, j ≤ n. (10.1)

Now suppose Gaussian elimination is performed in interval arithmetic. For
intervals X,Y ∈ IR it is easy to see that

rad(XY) ≥ rad(X) · |mid(Y)|+ |mid(X)| · rad(X)

(Neumaier 1990, Proposition 1.6.5).16 Using this and (5.8), a very crude

16 Note the similarity to (uv)′ = u′v + uv′.
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estimate for the radius of the new elements of the elimination is

rad(A(k+1)
ij ) ≥ rad(A(k)

ij ) + |ϕ(k)
i | · rad(A(k)

kj ). (10.2)

In matrix notation this takes the form

rad(A(k+1)) ≥ |L(k)| · rad(A(k)),

valid for the first k rows of the upper triangle of A(k+1) and for the lower
right square of A(k+1), i.e., for indices k + 1 ≤ i, j ≤ n. Finally we obtain

rad(U) ≥ upper triangle
[
|L(n−1)| · . . . · |L(2)| · |L(1)| · rad(A)

]
. (10.3)

A unit lower triangular matrix with non-zero elements below the diagonal
only in column k is inverted by negating those elements. Hence |L(k)|−1 =
〈L(k)〉 using Ostrowski’s comparison matrix,

〈A〉ij :=

{
|Aij | for i = j,

− |Aij | otherwise.
(10.4)

It follows that

|L(n−1)| · . . . · |L(2)| · |L(1)| =
[
〈L(1)〉 · 〈L(2)〉 · . . . · 〈L(n−1)〉

]−1 = 〈L〉−1,

and (10.3) implies

rad(U) ≥ upper triangle
[
〈L〉−1 · rad(A)

]
. (10.5)

It is known that for a random matrix ‖〈L〉−1‖/‖L−1‖ is large. However, the
L factor of Gaussian elimination is far from random. One reason is that
L is generally well-conditioned, even for ill-conditioned A, despite the fact
that Viswanath and Trefethen (1998) showed that random lower triangular
matrices are generally ill-conditioned.

Adopting the analysis of Gaussian elimination by Trefethen and Schreiber
(1990), for many classes of matrices we can expect the multipliers, i.e., the
elements of L, to have mean zero with standard deviation

σ(Lik) ≈
1

W (m)

(
1−

√
2/πW (m)e−W (m)2/2

erf(W (m)/
√

2)

)1/2

∼
(

1
2 log(m

√
2/π)

)1/2

,

(10.6)
where m = n + 1 − k for partial pivoting, and W (m) denotes the ‘winner
function’ for which

W (m) ≈ α

(
1− 2 logα

1 + α2

)1/2

+O
(

1
logm

)

with α :=
√

2 log(m
√

2/π). The expected absolute value of the multipliers
is about 0.6745 times the standard deviation. Hence we can compute a
matrix L which, in general, is not too far from |L|, and can compute Φ :=
‖〈L〉−1‖.
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Table 10.1. Lower bound for the amplification factor for interval
Gaussian elimination (IGA).

n = 20 n = 50 n = 100 n = 150 n = 170

Φ 1.0 · 102 1.6 · 105 1.4 · 1010 7.6 · 1014 5.4 · 1016

‖〈L〉−1‖ 2.6 · 102 2.2 · 106 4.6 · 1013 2.7 · 1019 5.3 · 1021

After the first elimination step of interval Gaussian elimination, the in-
evitable presence of rounding errors produces an interval matrix A(2) with
rad(A(2)) ≥ u|A(2)|. Thus Φ is a lower bound for the amplification of radii
in IGA.

Table 10.1 lists this lower bound Φ for different dimensions. In addition,
‖〈L〉−1‖ for the factor L of some random matrix is displayed. For small
dimension the amplification Φ exceeds u−1, which means breakdown of IGA.
These estimates are very crude; in practice the behaviour is even worse than
the second line of Table 10.1, as explained in a moment.

The model does not apply to special matrices such as M -matrices or
diagonally dominant matrices. In fact one can show that IGA does not
break down for such matrices. However, for such matrices very fast methods
are available to solve linear systems with rigour; see Section 10.9.

In what follows we monitor the practical behaviour of IGA. For general
linear systems the condition number is usually reflected in the U factor.
Thus it seems reasonable to monitor the relative error of the last component
Unn. We define the relative error of an interval X ∈ IF by

relerr(X) :=

{
|rad(X)
mid(X) | if 0 /∈ X,

rad(X) otherwise.
(10.7)

For randomly generated matrices with normally distributed random entries,
Gaussian elimination with partial pivoting is applied to generate L and U
factors. All operations are interval operations, and the pivot element is the
one with largest mignitude mig(X) := min{|x| : x ∈ X}. This is about the
best one can do.

In Table 10.2 we display the time ratio for a Gaussian elimination for a
matrix of the same size in pure floating-point arithmetic, and the median
relative error of Unn over 100 samples. If some interval Uii contains 0 we
call that a failure. The percentage of failures is listed as well, and the time
ratio and relative errors displayed are the means over successful examples.
As can be seen, the relative error of Unn increases with the dimension, and
for dimensions about 60 to 70 the approach fails completely. Note that
this is true even though random matrices are well known to be reasonably
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Table 10.2. Results for interval Gaussian elimination (IGA) for
random matrices and random orthogonal matrices.

Random matrices Random orthogonal matrices
Dimension Time relerr(Unn) Failure Time relerr(Unn) Failure

ratio % ratio %

10 173.9 3.4e-013 0 171.6 1.3e-014 0
20 320.5 2.7e-009 0 320.9 6.3e-012 0
30 432.3 2.1e-007 0 419.5 2.5e-009 0
40 482.2 1.0e-004 0 497.7 1.0e-006 0
50 407.0 4.9e-002 2 434.6 4.4e-004 0
60 454.0 6.6e-001 96 414.2 1.4e-001 4
70 100 100

well-conditioned. Moreover, not only do the results become useless, but the
approach is also very slow due to many branches and rounding switches, as
explained in Section 9.1.17

The reason is solely the number of consecutive interval operations, perma-
nently violating the Utilize input data principle (5.13). Data depen-
dencies quickly produce wide and useless results. Interval arithmetic is not
to blame for this: the result would be the same with power set operations
applied in this way.

To confirm that even the mild condition numbers of random matrices do
not contribute, similar data for randomly generated orthogonal matrices are
also displayed in Table 10.2.

The picture changes when the input data have a specific structure, such
as A being an M -matrix. Then no overestimation occurs, because the No
inaccurate cancellation principle (NIC) is satisfied. However, the
time penalty persists, and the methods in Section 10.9 should be used.

To emphasize the point, we take a randomly generated 3× 3 matrix and
multiply it by another random matrix several times in interval arithmetic.
Note that all matrices are point matrices (left and right bounds coincide),
and that every factor is a new random matrix. All entries of the intermediate
products are summed up, and the relative error of this sum is displayed. The
following code produces a semi-logarithmic graph of the result.

Algorithm 10.1. Product of random matrices:

imax = 65; y = zeros(1,imax); A = intval(randn(3));
for i=1:imax, A=A*randn(3); y(i)=relerr(sum(A(:))); end
close, semilogy(1:imax,y)

17 Note that the code was vectorized where possible.
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Figure 10.1. Overestimation by naive
interval arithmetic and dependencies.

A typical graph of the result is shown in Figure 10.1. As can be seen,
rounding errors add from step to step, resulting in an exponentially growing
relative error. A rule of thumb roughly predicts an increase of the relative
error by a factor 2K after K iterations. Since 248 ∼ 1016 and double preci-
sion corresponds to about 16 decimal places of precision, a relative error 1
can be expected after some 50 iterations.

10.2. Partial pivoting

The method of choice for a dense system of linear equations is Gaussian
elimination with partial pivoting. Although it is known that the growth
factor may increase exponentially with the dimension, the corresponding
examples seemed to be constructed and not occurring in practice. In 1993
Wright (1993) showed practical examples with exponential growth factor.
For example, integrating

ẋ = x− 1 for x(0) = x(40)

and applying a trapezoid rule results in a linear system Ax = b, the solution
of which is obviously the vector of ones. For given n, the following MATLAB
code, given by Foster (1994),

T = 40; h = T/(n-1);
b = -(0:n-1)’*h;
A = - h * tril(ones(n),-1);
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A = A + (1-h/2) * diag(ones(n,1));
A(:,1) = -(h/2)*ones(n,1);
A(1,1) = 1; A(:,n) = -ones(n,1);
A(n,n) = -(h/2);

computes A and b. Up to n = 60 the solution is very accurate, but for
larger n the exponential increase of the growth factor produces meaningless
results. For example, the components x62...65 of x = A\b for n = 65 are

-23.272727272727273
0

-93.090909090909093
1.000000000000000

rather than all ones. The condition number of the matrix is less than 30,
so the disastrous effect of rounding errors is only due to the large growth
factor. Remarkably, no warning is given by MATLAB, so a user might trust
the computed values. It is also well known that one extra residual iteration
in working precision produces a backward stable result. Doing this, even
for large dimension, produces accurate results.

There seems little potential for converting floating-point Gaussian elimi-
nation into a verification algorithm, because known error estimates need an
upper bound for the condition number. There are condition estimators as
well, but there is strong evidence that a reliable condition estimator costs
as much as a reliable computation of A−1. In fact Demmel, Diament and
Malajovich (2001) have shown that reliably computing a bound for ‖A−1‖
has at least the cost of testing whether the product of two n × n matrices
is zero, which in turn is believed to actually cost as much as computing
the product.

10.3. Preconditioning

One way to follow the Utilize input data principle (5.13) and to avoid
successive operations on computed data is preconditioning by some approx-
imate inverse R. This very important principle was proposed by Hansen
and Smith (1967), analysed in Ris (1972), and its optimality in a certain
sense shown by Neumaier (1984).

It is an unwritten rule in numerical analysis never to compute the inverse
of a matrix, especially not to solve a linear system Ax = b. Indeed, the
direct solution by Gaussian elimination is not only faster but also produces
more accurate results than multiplication of b by a computed inverse. For
the purpose of verification other rules apply, in particular to rely only on
the input data if possible. There are other (and faster) verification ap-
proaches using factorizations of A; see Oishi and Rump (2002). However,
preconditioning by some approximate inverse is of superior quality.
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Given a linear system Ax = b with non-singular A, some R ∈ R
n×n and

some x̃ ∈ R
n, there follows

‖A−1b− x̃‖ = ‖
(
I − (I −RA)

)−1
R(b−Ax̃)‖ ≤ ‖R(b−Ax̃‖

1− ‖I −RA‖ (10.8)

provided ‖I − RA‖ < 1. We stress that there are no mathematical as-
sumptions on R: if A is too ill-conditioned and/or R is of poor quality,
then ‖I − RA‖ < 1 is not satisfied. Moreover, if ‖I − RA‖ < 1 is satis-
fied, we conclude a posteriori that A (and R) is non-singular. This proves
the following.

Theorem 10.2. Let A,R ∈ R
n×n and b, x̃ ∈ R

n be given, and denote by
I the n × n identity matrix. If ‖I − RA‖ < 1 for some matrix norm, then
A is non-singular and

‖A−1b− x̃‖ ≤ ‖R(b−Ax̃)‖
1− ‖I −RA‖ . (10.9)

In particular, the ∞-norm is useful because it directly implies componen-
twise error bounds on the solution, and it is easy to calculate. This theorem
is especially suited to deriving error estimates using interval arithmetic.

10.4. Improved residual

Note that the quality of the bound in (10.9) depends directly on the size of
the residual ‖b − Ax̃‖ and can be improved by some residual iteration on
x̃. If dot products can be calculated accurately, an inclusion of the solution
A−1b accurate to the last bit can be computed provided ‖I −RA‖ < 1.

This can be done18 by multi-precision packages, such as, for example, the
MPFR-package of Fousse et al. (2005), or based on ‘error-free transforma-
tions’, as discussed in Section 3. Recently the latter techniques were used to
derive very fast algorithms for computing rigorous error bounds of sums and
dot products of vectors of floating-point numbers to arbitrary accuracy, for
example by Zielke and Drygalla (2003), Zhu, Yong and Zheng (2005), Rump,
Ogita and Oishi (2008) and Rump (2009). The algorithms are particularly
fast because there are no branches, and only floating-point operations in one
working precision are used. INTLAB contains reference implementations,
which however, severely suffer from interpretation overhead.

Some improvement can be achieved by the ‘poor man’s residual’ algorithm
lssresidual. It is based on the following algorithm by Dekker for splitting
a floating-point number into some higher- and lower-order part.

18 Sometimes it is preferable to solve the given linear system using a multi-precision
package from the beginning.
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Algorithm 10.3. Error-free splitting of a floating-point number into two
parts:

function [x, y] = Split(a)
c = fl(ϕ · a) % ϕ = 2s + 1
x = fl(c− fl(c− a))
y = fl(a− x)

As a result a = x+ y for all a ∈ F, and in 53-bit precision x and y have
at most 53− s and s− 1 significant bits. In particular, for s = 27 a 53-bit
number is split into two 26-bit parts, which can be multiplied in floating-
point arithmetic without error. The trick is that the sign bit is used as an
extra bit of information.

Algorithm 10.4. Improved computation of the residual of a linear system
(poor man’s residual):

function res = lssresidual(A,x,b)
factor = 68719476737; % heuristically optimal splitting 2^36+1
C = factor*A;
Abig = C - A;
A1 = C - Abig; % upper part of A, first 17 bits
A2 = A - A1; % A = A1+A2 exact splitting
x = -x; y = factor*x;
xbig = y - x;
x1 = y - xbig; % upper part of -x, first 17 bits
x2 = x - x1; % -x = x1+x2 exact splitting
res = (A1*x1+b)+(A1*x2+A2*x);

This algorithm lssresidual splits A and x into 17 + 35 bits, so that the
product A1 ∗ x1 does not cause a rounding error if the elements of neither
A nor x cover a wide exponent range.
lssresidual is a cheap way to improve the residual, and thus the quality

of the solution of a linear system, also for numerical algorithms without ver-
ification. The command intvalinit(’ImprovedResidual’) sets a flag in
INTLAB so that verifylss uses this residual improvement. It is applicable
for a matrix residual I −RA as well.

10.5. Dense linear systems

Before discussing other approaches for verification, we show the computed
bounds by Theorem 10.2 for a linear system with matrix as in (2.11) of
dimension n = 9. Note that, except for n = 2, these matrices are more
ill-conditioned than the well-known and notoriously ill-conditioned Hilbert
matrices. The right side is computed so that the solution A−1b is the vector
of ones. This is done by the following executable code, first for the floating-
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point matrix nearest to the original matrix:

n = 9; A = 1./reshape(1:n^2,n,n); b = A*ones(n,1);
R = inv(A); xs = A\b;
d = norm(eye(n)-R*intval(A),inf);
if d<1
midrad( xs , mag(norm(R*(b-A*intval(xs)),inf)/(1-d)) )

end

Note that the quantity d is estimated in interval arithmetic and is itself of
type interval. The magnitude of an interval X is defined by mag(X) :=
max{|x| : x ∈ X} ∈ F. The result is as follows:

intval ans =
[ 0.8429, 1.1571]
[ 0.8429, 1.1571]
[ 0.8429, 1.1571]
[ 0.8428, 1.1569]
[ 0.8441, 1.1582]
[ 0.8384, 1.1526]
[ 0.8514, 1.1656]
[ 0.8353, 1.1495]
[ 0.8455, 1.1596]

The quality of the inclusion seems poor, but it corresponds roughly to the
condition number cond(A) = 4.7 · 1014. This is the largest dimension of the
matrix as in (2.11), for which Theorem 10.2 is applicable. For n = 10 the
condition number of A is 8.6 · 1016.

For a completely rigorous result there are two flaws. First, as has been
mentioned, we do not use the true, real matrices as in (2.11), but floating-
point approximations. Second, the right-hand side b is computed in floating-
point arithmetic as well, which means that the vector of ones is likely not
the solution of the linear system. Both problems are easily solved by the
following code:

n = 9; A = 1./intval(reshape(1:n^2,n,n)); b = A*ones(n,1);
R = inv(A.mid); xs = A.mid\b.mid;
d = norm(eye(n)-R*A,inf);
if d<1
midrad( xs , mag(norm(R*(b-A*xs),inf)/(1-d)) )

end

Now the interval matrix A contains the original real matrix as in (2.11).
The assertions of Theorem 10.2 are valid for all matrices within the interval
matrix A, in particular for the original real matrix. This statement includes
the non-singularity as well as the error bounds. The result is shown in
Table 10.3; the true solution is again the vector of all ones.
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Table 10.3. Inclusion by Theorem 10.2 for a
9× 9 linear system with matrix as in (2.11).

intval ans =
[ 0.6356, 1.3644]
[ 0.6356, 1.3644]
[ 0.6356, 1.3644]
[ 0.6357, 1.3645]
[ 0.6344, 1.3632]
[ 0.6403, 1.3691]
[ 0.6267, 1.3555]
[ 0.6435, 1.3723]
[ 0.6329, 1.3617]

The diameter is even worse because now the set of solutions A−1b is
included for all A ∈ A and b ∈ b. However, it may equally well be attributed
to overestimation by interval arithmetic. But it is possible to estimate the
overestimation, as will be described in Section 10.6.

A drawback to this approach is that ‖I − RA‖ < 1 is mandatory. In
order to be easily and reliably computable there is not much choice for
the matrix norm. If the matrix is badly scaled this causes problems. It is
possible to incorporate some kind of scaling in the verification process. The
corresponding inclusion theorem is based on a lemma by Rump (1980). The
following simple proof is by Alefeld.

Lemma 10.5. Let Z,X ∈ IR
n and C ∈ IR

n×n be given. Assume

Z + CX ⊂ int(X), (10.10)

where int(X) denotes the interior of X. Then, for every C ∈ C the spectral
radius �(C) of C is less than one.

Proof. Let C ∈ C be given and denote Z = [Z,Z]. Then, following (9.10)
yields

Z + CX = C ·mid(X) + [Z− |C| · rad(X),Z + |C| · rad(X)] ⊂ int(X),

and therefore
|C| · rad(X) < rad(X).

Since rad(X) is a positive real vector, Perron–Frobenius theory yields �(C)≤
�(|C|) < 1.

Based on this we can formulate a verification method, i.e., a theorem the
assumptions of which can be verified on digital computers. The theorem
was formulated by Krawczyk (1969a) as a refinement of a given inclusion
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of A−1b, and modified as an existence test by Moore (1977). Our exposition
follows Rump (1980).

Theorem 10.6. Let A,R ∈ R
n×n, b ∈ R

n and X ∈ IR
n be given, and

denote by I the n× n identity matrix. Assume

Rb+ (I −RA)X ⊂ int(X). (10.11)

Then the matrices A and R are non-singular and A−1b ∈ Rb+ (I −RA)X.

Proof. By Lemma 10.5 the spectral radius of C := I−RA is less than one.
Hence the matrices R and A are non-singular, and the iteration x(k+1) :=
z + Cx(k) with z := Rb converges to (I − C)−1z = (RA)−1Rb = A−1b for
every starting point x(0) ∈ R

n. By (10.11), x(k) ∈ X for any k ≥ 0 if
x(0) ∈ X, and the result follows.

Condition (10.11) is the only one to be verified on the computer. To build
an efficient verification algorithm, we need three improvements introduced in
Rump (1980). First, condition (10.11) is still a sufficient criterion for given
X, and the problem remains of how to determine a suitable candidate. The
proof suggests an interval iteration,

X(k+1) := Rb+ (I −RA)X(k), (10.12)

so that with X(k+1) ⊆ int(X(k)) the assumption of Theorem 10.6 is satisfied
for X := X(k).

This is not sufficient, as trivial examples show. Consider a 1 × 1 linear
system with b = 0, a poor ‘approximate inverse’ R so that 1 − RA = −0.6
and a starting interval X(k) := [−1, 2]. Obviously the solution 0 is enclosed
in every iterate, but X(k+1) never belongs to int(X(k)).

So, secondly, it needs a so-called epsilon-inflation, that is, to enlarge
X(k) intentionally before the next iteration. This was first used in Caprani
and Madsen (1978); the term was coined and the properties of the method
analysed in Rump (1980). One possibility is

Y := X(k) · [0.9, 1.1] + [−e, e],
X(k+1) := Rb+ (I −RA)Y,

(10.13)

with some small constant e and to check X(k+1) ⊆ int(Y).
The third improvement is that it is often better to calculate an inclusion

of the difference of the true solution to an approximate solution x̃. For
linear systems this is particularly simple, by verifying

Y := R(b−Ax̃) + (I −RA)X ⊂ int(X) (10.14)

to prove A−1b ∈ x̃+ Y. Nowadays these three improvements are standard
tools for nonlinear and infinite-dimensional problems (see Sections 13, 15
and 16).
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Table 10.4. Inclusion by Algorithm 10.7 for a
9× 9 linear system with matrix as in (2.11).

intval X =
[ 0.9999, 1.0001]
[ 0.9999, 1.0001]
[ 0.9998, 1.0002]
[ 0.9955, 1.0050]
[ 0.9544, 1.0415]
[ 0.8363, 1.1797]
[ 0.6600, 1.3095]
[ 0.7244, 1.3029]
[ 0.8972, 1.0935]

In summary, we obtain the following verification algorithm presented in
Rump (1980) for general dense systems of linear equations with point or
interval matrix and right-hand side.19

Algorithm 10.7. Verified bounds for the solution of a linear system:

function XX = VerifyLinSys(A,b)
XX = NaN; % initialization
R = inv(mid(A)); % approximate inverse
xs = R*mid(b); % approximate solution
C = eye(dim(A))-R*intval(A); % iteration matrix
Z = R*(b-A*intval(xs));
X = Z; iter = 0;
while iter<15
iter = iter+1;
Y = X*infsup(0.9,1.1) + 1e-20*infsup(-1,1);
X = Z+C*Y; % interval iteration
if all(in0(X,Y)), XX = xs + X; return; end

end

Theorem 10.8. If Algorithm 10.7 ends successfully for a given interval
matrix A ∈ IR

n×n and interval right-hand side b ∈ IR
n, then the following

is true. All matrices A ∈ A are non-singular, and the computed XX satisfies

Σ(A,b) := {x ∈ R
n : Ax = b for some A ∈ A, b ∈ b} ⊆ XX. (10.15)

Proof. The proof follows by applying Theorem 10.6 to fixed but arbitrary
A ∈ A and b ∈ b and the Inclusion property (5.16).

Note that the result is valid for a matrix right-hand side b ∈ IR
n×k as

well. In particular, it allows one to compute an inclusion of the inverse of a

19 The routine in0(X, Y) checks X ⊂ int(Y) componentwise.
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Table 10.5. Computing time of Algorithm 10.7 for
dense point and interval linear systems, Gaussian
elimination in floating-point arithmetic normed to 1.

Dimension Point data Interval data

100 7.3 8.2
200 6.4 8.2
500 6.8 9.9

1000 7.0 9.5
2000 7.7 10.4

matrix A ∈ R
n×n, and also of the set of inverses {A−1 : A ∈ A} including

the proof of non-singularity of all A ∈ A. It was shown by Poljak and
Rohn (1993) that the latter is an NP-hard problem. Rohn (2009a) gives 40
necessary and sufficient criteria for non-singularity of an interval matrix.

Theorem 10.8 is superior to Theorem 10.2. For our model problem in
(2.11) for n = 9 with the interval matrix A containing the true real matrix,
for example, we obtain C := I − RA with norm(mag(C)) = 0.0651 but
�(mag(C)) = 0.0081. Accordingly the result of Algorithm 10.7, as displayed
in Table 10.4, is superior to that in Table 10.3. Recall that the condition
number ‖A−1‖‖A‖ of the midpoint matrix is again increased by taking the
(narrowest) interval matrix including the matrix (2.11) for n = 9. For
n = 10 we have norm(mag(C)) = 10.29 but �(mag(C)) = 0.94. Therefore
Theorem 10.2 is not applicable, whereas with Theorem 10.8 an inclusion
is still computed. Due to the extreme20 condition number 8.2 · 1016 of the
midpoint matrix, however, the quality is very poor.

Epsilon-inflation is theoretically important as well. It can be shown that
basically an inclusion will be computed by Algorithm 10.7 if and only if
�(|I − RA|) < 1. Note the similarity to the real iteration x(k+1) := Rb +
(I − RA)x(k), which converges if and only if �(I −RA) < 1. In a practical
application there is usually not too much difference between �(|I − RA|)
and �(I − RA). Also note that the only matrix norms which can be easily
estimated are the 1-norm, the ∞-norm and the Frobenius norm, for which
the norm of C and |C| coincides.

The main computational effort in Algorithm 10.7 is the computation of
R and C. Using (9.10) and (9.14) this corresponds to the cost of 3 or 4 real
matrix multiplications, respectively. The cost of Gaussian elimination is
one third of one real matrix multiplication, so we can expect the verification
algorithm to take 9 or 12 times the computing time of Gaussian elimination

20 Computed with a symbolic package corresponding to infinite precision.
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Table 10.6. Quality of inclusions µ/cond(A) of Algorithm 10.7 for point data.

n = 100 n = 200 n = 500 n = 1000 n = 2000

cond(A) = 1010 6.7 · 10−16 2.1 · 10−15 6.3 · 10−15 2.0 · 10−14 6.0 · 10−14

cond(A) = 1011 5.8 · 10−16 1.5 · 10−15 8.4 · 10−15 2.1 · 10−14 4.6 · 10−14

cond(A) = 1012 8.1 · 10−16 1.9 · 10−15 7.7 · 10−15 1.5 · 10−14 5.0 · 10−14

cond(A) = 1013 5.2 · 10−16 2.1 · 10−15 4.5 · 10−15 2.3 · 10−14 6.4 · 10−14

cond(A) = 1014 8.4 · 10−16 3.0 · 10−15 7.5 · 10−15 9.6 · 10−13 failed

for point or interval input matrices, respectively. This is confirmed by the
measured computing time in Table 10.5, where the ratio is a little better
than expected since BLAS routines for matrix multiplication are, in contrast
to Gaussian elimination, likely to achieve nearly peak performance.

The sensitivity of the solution of a linear system is measured by the con-
dition number. Computing in double precision corresponding to 16 decimal
digits precision, for cond(A) = 10k we cannot expect more than about 16−k
correct digits of the solution. What is true for the pure floating-point al-
gorithm is also true for the verification process. If µ is the median of the
relative errors of an inclusion computed by Algorithm 10.7, then the ratio
µ/cond(A) should be constantly 10−16. For randomly generated matrices
with specified condition number, this is confirmed in Table 10.6.

The practical implementation verifylss in INTLAB of a verification
algorithm for dense systems of linear equations is based on Algorithm 10.7.

10.6. Inner inclusion

The traditional condition number for a linear system Ax = b is defined by

κE,f (A, x) := lim
ε→0

sup
{
‖∆x‖
ε‖x‖ : (A+ ∆A)(x+ ∆x) = b+ ∆b, ∆A ∈ R

n×n,

∆b ∈ R
n, ‖∆A‖ ≤ ε‖E‖, ‖∆b‖ ≤ ε‖f‖

}
, (10.16)

and it is known (Higham 2002) that

κE,f (A, x) = ‖A−1‖ ‖E‖+
‖A−1‖ ‖f‖
‖x‖ . (10.17)

This is the sensitivity of the solution with respect to infinitesimally small
perturbations of the input data. The solution set Σ(A,b) in (10.15) char-
acterizes the sensitivity for finite perturbations. As shown by Kreinovich,
Lakeyev and Noskov (1993) and Rohn (1994), the computation of the
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interval hull of Σ(A, b) is an NP-hard problem, even when computed only
to a certain precision.

Algorithm 10.7 computes an inclusion X of the solution set, thus upper
bounds for the sensitivity of A−1b with respect to finite perturbations of A
and b. Estimating the amount of overestimation of X yields lower bounds
for the sensitivity, and this is possible by ‘inner’ inclusions of Σ(A,b).

For interval input data, besides the solution set defined in (10.15), the
‘tolerable (or restricted) solution set’ (see Shary (2002))

Σ∀∃(A,b) := {x ∈ R : ∀A ∈ A ∃b ∈ b with Ax = b} = {x ∈ R
n : Ax ⊆ b}

(10.18)
and the ‘controllable solution set’

Σ∃∀(A,b) := {x ∈ R : ∀b ∈ b∃A ∈ A with Ax = b} = {x ∈ R
n : Ax ⊇ b}

(10.19)
are also of interest. We restrict our attention to what is sometimes called
the ‘united solution set’ (10.15).

An inclusion X ∈ IF of the solution set defined in (10.15) computed
by Algorithm 10.7 may be wide due to overestimation and/or due to the
sensitivity of the problem. The best-possible computable inclusion Y ∈ IF is

Y :=
⋂
{Z ∈ IF : Σ(A,b) ⊆ Z} = hull(Σ(A,b)). (10.20)

The following theorem shows how to estimate the overestimation of X
with respect to Y. Such ‘inner’ inclusions were introduced by Neumaier
(1987, 1989). Here we follow Rump (1990), who showed how to obtain
them practically without additional computational effort.

Theorem 10.9. Let A ∈ IR
n×n,b ∈ IR

n, x̃ ∈ R
n and X ∈ IR

n be given.
Define

Z := R(b−Ax̃) and ∆ := (I −RA)X, (10.21)

and suppose

Z + ∆ ⊂ int(X). (10.22)

Then R and every matrix A ∈ A is non-singular, and Y as defined in (10.20)
satisfies

x̃+Z+∆ ≤ Y ≤ x̃+Z+∆ and x̃+Z+∆ ≤ Y ≤ x̃+Z+∆. (10.23)

Proof. Let A ∈ A and b ∈ b be given. Applying Theorem 10.6 to the
linear system Ay = b − Ax̃ implies that A and R are non-singular, and
y = A−1b − x̃ ∈ Z + ∆. Since A and b are chosen arbitrarily and Z +
∆ = [Z + ∆,Z + ∆], this proves Σ(A,b) ⊆ x̃ + Z + ∆ and the first and
last inequality in (10.23). Using (10.22), it follows that Σ(A,b) − x̃ ⊆ X.
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Table 10.7. Ratio of diameter of inner and outer inclusions for n = 100
and interval data.

Width of input n = 50 n = 100 n = 200 n = 500 n = 1000

10−12 1.000 1.000 1.000 1.000 1.000
10−8 1.000 1.000 1.000 1.000 1.000
10−6 1.000 0.998 0.991 0.955 0.954
10−5 0.996 0.992 0.974 0.710 0.641
10−4 0.962 0.684 0.502 failed failed

Furthermore,

{x̃+R(b−Ax̃) : A ∈ A, b ∈ b}
= {A−1b− (I −RA)(A−1b− x̃) : A ∈ A, b ∈ b}
⊆ Σ(A,b)− {(I −RA)(A−1b− x̃) : A ∈ A, b ∈ b}
⊆ Σ(A,b)− {(I −RA1)(A−1

2 b− x̃) : A1, A2 ∈ A, b ∈ b}
⊆ Σ(A,b)− (I −RA)(Σ(A,b)− x̃)
⊆ Σ(A,b)−∆,

where all set operations, even on interval quantities, are power set opera-
tions. If U ⊆ V for two sets U, V ∈ R

n, then hull(U) ⊆ hull(V ), and (9.4)
and (9.6) imply

x̃+ [Z,Z] = x̃+ Z ⊆ Y −∆ = [Y −∆,Y −∆]. (10.24)

This finishes the proof.

Special care is necessary when applying this on the computer because
lower and upper bounds are required in (10.23) for Z and for Z. Using
directed roundings and (9.6), this is not difficult. Note that for the outer
and the inner bounds of Y only an outer inclusion of ∆ is necessary. There-
fore, the inner bounds in Theorem 10.9 come with an extra effort of O(n2)
operations, so almost for free.

For interval input A,b, Theorem 10.9 yields an inner inclusion x̃+ [Z +
∆,Z+∆], provided the radius of ∆ is no larger than the radius of Z. Since
X is the potential inclusion of the distance of x̃ to the true solution, ∆ is the
product of two small quantities and can be expected to be of small radius.

In Table 10.7 we display the median of the componentwise ratios of the
inner inclusion to the radius of the outer inclusion x̃+Z+∆. The matrices
are generated by midrad(randn(n), r ∗ rand(n)) for r as given in the first
column. This corresponds approximately to the relative precision of the
matrix components. The right-hand side is computed by b = A ∗ ones(n, 1).
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Table 10.8. Comparison of Monte Carlo and
verification method for n = 100.

K = 10 K = 100 K = 1000 K = 10000

0.084 0.153 0.215 0.266

For increasing dimensions the ratio of the radii of inner and outer inclu-
sions is not too far from 1 if the relative precision of the input data is not
too large. For a relative precision of 10−4 the verification algorithm fails for
dimension 500 and 1000, presumably because singular matrices slip into the
input interval matrix. For these cases the spectral radius of mag(I − RA)
is 1.15 and 2.18, respectively.

For relative precision 10−6 the radius of the inner inclusion is at least 95%
of the outer inclusion, i.e., the computed inclusion X by Algorithm 10.7 is
not too far from the best possible inclusion Y as in (10.20). A Monte Carlo
approach underestimates Y in principle. For fixed dimension n = 100 we
choose K vertex matrices A and right-hand sides b, solve the linear system
Ax = b and form the narrowest interval vector Z containing all those solu-
tions. We compare this with the solution X computed by Algorithm 10.7.
In Table 10.8 the median of the quotient of the radii of Z and X is displayed
for different values of K.

The computational effort for the Monte Carlo method is about K/10
times as much as for verification; however, improvement is slowly increasing
with K. Note that the result of Algorithm 10.7 is of high quality and proved
to be correct.

However, there is a major drawback to verification routines applied to
interval data. All interval input is regarded as independent of each other.
Simple dependencies such as symmetry are often difficult to take account
of in verification algorithms. For linear systems this is possible, even for
general linear dependencies of the input data, however, at the cost of roughly
doubling the computational effort (see Section 10.7). In contrast, rather
general, also nonlinear, dependencies are easily taken into account with a
Monte Carlo approach.

The solution set was characterized by Oettli and Prager (1964) as

x ∈ Σ(A,b) ⇔ |mid(A)x−mid(b)| ≤ rad(A)|x|+ rad(b).

Moreover, the shape of the intersection of Σ(A,b) with some orthant is
precisely prescribed by rewriting the problem as an LP-problem, as follows.

Let S ∈ R
n×n be a signature matrix, i.e., a diagonal matrix with |Sii| = 1

for 1 ≤ i ≤ n. The set O := {x ∈ R
n : Sx ≥ 0} defines an orthant in R

n.
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Figure 10.2. Solution set Σ(A,b) for A,b as in (10.27).

For A := [mA− rA,mA+ rA] and x ∈ O it follows that

Ax = [mA− rA,mA+ rA]x = mA · x+ [−rA · Sx, rA · Sx] (10.25)

because Sx ≥ 0. As explained in (9.4), there is no overestimation in the
computation of Ax; interval and power set operations coincide. Therefore

Σ(A,b)∩O = {x ∈ R
n : Sx ≥ 0, (mA−rA·S)x ≤ b, (mA+rA·S)x ≥ b}.

(10.26)
Hence the intersection of Σ(A,b) with every orthant is obtained by solving
some LP-problems, the number of which is polynomial in the dimension n.
However, there are 2n orthants, and Σ(A,b) may have a non-empty in-
tersection with each orthant although all matrices in A are non-singular.
Here is the reason for the NP-hardness. Jansson (1997) gave an algorithm
to compute exact bounds for Σ(A,b) with computing time not necessarily
exponential in the dimension, and Jansson and Rohn (1999) gave a similar
algorithm for checking non-singularity of an interval matrix. Both algo-
rithms, however, are worst-case exponential.

The INTLAB function plotlinsol(A, b) computes the graph of the solu-
tion set of a 2- or 3-dimensional interval linear system. For example (taken
from Neumaier (1990, p. 96 ff.)),

A =


 3.5 [0, 2] [0, 2]

[0, 2] 3.5 [0, 2]
[0, 2] [0, 2] 3.5


 and b =


[−1, 1]

[−1, 1]
[−1, 1]


 (10.27)

produce the solution set Σ(A,b), as shown in Figure 10.2. Because of the
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wide input intervals, the inclusion

intval X =
[ -8.6667, 8.6667]
[ -8.6667, 8.6667]
[ -8.6667, 8.6667]

computed by verifylss overestimates the interval hull [−1.7648, 1.7648] ·
(1, 1, 1)T of the true solution set Σ(A,b), and the inner inclusion by The-
orem 10.9 is empty. Note that the true solution set of the preconditioned
linear system using the true inverse R := mid(A)−1 is

hull
(
Σ(RA, Rb)

)
= [−8.6667, 8.6667] · (1, 1, 1)T ,

so that the reason for the overestimation by verifylss is solely the precon-
ditioning.

10.7. Data dependencies

In practice, matrices are often algebraically structured, for example sym-
metric or Toeplitz. Denote by M struct

n a set of matrices such that A,B ∈
M struct

n ⊆ R
n×n implies A+B ∈M struct

n . Then Higham and Higham (1992b)
generalize the usual condition number (10.16) into a structured condition
number by

κstruct
E,f (A, x) := (10.28)

lim
ε→0

sup
{
‖∆x‖
ε‖x‖ : (A+ ∆A)(x+ ∆x) = b+ ∆b, ∆A ∈M struct

n ,

∆b ∈ R
n, ‖∆A‖ ≤ ε‖E‖, ‖∆b‖ ≤ ε‖f‖

}
,

where the spectral norm is used. It includes general matrices (no structure),
i.e., M struct

n = R
n×n.

For symmetric matrices, Bunch, Demmel and Van Loan (1989) showed
that the unstructured and structured condition numbers are equal, i.e.,
among the worst-case perturbations for A is a symmetric one; for many
other structures Rump (2003b) showed that there is also no – or not much –
difference. For some structures, however, such as Toeplitz matrices, Rump
and Sekigawa (2009) showed that there exist An ∈MToep

n and b ∈ R
n such

that κToep
An,b/κAn,b < 2−n.

Note that this happens only for a specific right-hand side: the matrix
condition number for general and structured perturbations is the same for
many structures. More precisely, define

κstruct(A) := (10.29)

lim
ε→0

sup
{
‖(A+ ∆A)−1 −A−1‖

ε‖A−1‖ : ∆A ∈M struct
n , ‖∆A‖ ≤ ε‖A‖

}
.
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Then Rump (2003b) showed that

κstruct(A) = κ(A) = ‖A−1‖ · ‖A‖ (10.30)

for general, symmetric, persymmetric, skewsymmetric, Toeplitz, symmetric
Toeplitz, Hankel, persymmetric Hankel, and circulant structures. Moreover,
define the structured distance to the nearest singular matrix by

δstruct(A) := min{α : ∆A ∈M struct
n , ‖∆A‖ ≤ α‖A‖, A+ ∆A singular}.

(10.31)
The (absolute) distance to the nearest singular matrix in the spectral norm
is the smallest singular value, so that δ(A) = [‖A−1‖ · ‖A‖]−1 = κ(A)−1 for
general perturbations. Rump (2003b) showed a remarkable generalization
of this famous result by Eckart and Young (1936), namely

δstruct(A) = κstruct(A)−1 (10.32)

for all structures mentioned above.
As in Section 10.6, the sensitivity of a linear system with respect to finite

structured perturbations can be estimated by inner inclusions. What is
straightforward for Monte Carlo-like perturbations requires some effort in
verification methods.

Let A be an interval matrix such that Aij = Aji for all i, j. The sym-
metric solution set is defined by

Σsym(A,b) := {x ∈ R
n : Ax = b for AT = A ∈ A, b ∈ b}.

Due to Jansson (1991), inclusions of the symmetric solution set can be
computed. Consider the following example taken from Behnke (1989):

A =
(

3 [1, 2]
[1, 2] 3

)
and b =

(
[10, 10.5]
[10, 10.5]

)
. (10.33)

Computed inner and outer inclusions for the solution set Σ(A,b) and the
symmetric solution set Σsym(A,b) are shown in Figure 10.3. To com-
pute outer and inner inclusions for the symmetric solution we adapt Theo-
rem 10.9. For data without dependencies we know that

b−Ax̃ = {b−Ax̃ : A ∈ A, b ∈ b}, (10.34)

by (9.4), and

R(b−Ax̃) = hull
(
{R(b−Ax̃) : A ∈ A, b ∈ b}

)
, (10.35)

by (9.6), so Z is best possible. As we have seen, ∆ in (10.21) is usually
small compared to Z. So the main task is to obtain a sharp inclusion of

Zsym := hull
(
{R(b−Ax̃) : AT = A ∈ A, b ∈ b}

)
. (10.36)

In view of Theorem 8.1 we use the symmetry to rearrange the computation
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Figure 10.3. Inner and outer inclusions for the solution set Σ(A,b)
and the symmetric solution set Σsym(A,b) for A,b as in (10.33).
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so that each interval quantity occurs only once:

(
R(b−Ax̃)

)
i
=

n∑
j=1

Rij(bj −Ajj x̃j)−
n∑

j,k=1
j<k

(Rij x̃k +Rikx̃j)Ajk. (10.37)

It follows that inserting A and b into (10.37) produces no overestimation,
resulting in the componentwise (sharp) computation of Zsym

i . Therefore we
may proceed as in the proof of Theorem 10.9, to obtain the following.

Theorem 10.10. Let A ∈ IR
n×n,b ∈ IR

n, x̃ ∈ R
n and X ∈ IR

n be given.
Define

∆ := (I −RA)X, (10.38)

and let Z be computed componentwise by (10.37). Furthermore, suppose

Z + ∆ ⊂ int(X). (10.39)

Then R and every matrix AT = A ∈ A is non-singular, and

Y := hull
(
Σsym(A,b)

)
satisfies

x̃+Z+∆ ≤ Y ≤ x̃+Z+∆ and x̃+Z+∆ ≤ Y ≤ x̃+Z+∆. (10.40)

Theorem 10.10 was used to compute the data in Figure 10.3. The idea of
computing a sharp inclusion of R(b −Ax̃) for symmetric A was extended
by Rump (1994) to general linear dependencies in the matrix and the right-
hand side as follows.

The following exposition borrows an idea by Higham and Higham (1992a),
which they used to analyse the sensitivity of linear systems with data de-
pendency. Denote by vec(A) ∈ R

mn the columns of a matrix A ∈ R
m×n

stacked into one vector, and let A⊗B ∈ R
mp×nq be the Kronecker product

of A ∈ R
m×n and B ∈ R

pq.
Let ϕ : R

k → R
n×n be a matrix-valued function depending linearly on

parameters p ∈ R
k, so that A(p) := ϕ(p) implies

A(p)ij = [c(ij)]T p (10.41)

for vectors c(ij) ∈ R
k. If Φ ∈ R

n2×k denotes the matrix with {(i−1)n+j}th
row [c(ij)]T , then

vec(A(p)) = Φp. (10.42)

The set M struct
n := {A(p) : p ∈ R

k} defines a set of structured matrices. Ob-
viously, A,B ∈M struct

n implies A+B ∈M struct
n , so that the sensitivity with

respect to infinitesimally small structured perturbations is characterized by
(10.28), and can be computed according to Higham and Higham (1992b).



Verification methods 355

Table 10.9. Number of parameters for different
structures.

Structure Number of parameters

symmetric n(n+ 1)/2
real skew-symmetric n(n− 1)/2
Toeplitz 2n− 1
symmetric Toeplitz n
circulant n

Next consider finite perturbations generalizing componentwise structured
perturbations discussed in Rump (2003c).

For fixed dimension, the matrix Φ depends only on the given structure.
For example, symmetry is modelled by Φsym with k = n(n + 1)/2 rows
and one non-zero entry 1 per row. For common structures the number k of
parameters is shown in Table 10.9.

A right-hand side b(p) linear depending on p is modelled in the same way
by some matrix Ψ ∈ R

n×k with b(p) = Ψp. For an interval vector p ∈ R
k,

define

A(p) := {A(p) : p ∈ p} and b(p) := {b(p) : p ∈ p}. (10.43)

Then (9.6) implies

Φp = hull(A(p)) and Ψp = hull(b(p)). (10.44)

As for (10.37), one verifies, for p ∈ R
k,

R
(
b(p)−A(p)x̃

)
=

(
RΨ− (x̃T ⊗R)Φ

)
p. (10.45)

Since RΨ− (x̃T ⊗R)Φ ∈ R
n×k is a point matrix, it follows by (9.4) that(

RΨ− (x̃T ⊗R)Φ
)
p = hull

{
R
(
b(p)−A(p)x̃

)
: p ∈ p

}
. (10.46)

As for Theorems 10.9 and 10.10, this is the foundation for calculating outer
and inner inclusions for systems of linear equations, with general linear
dependencies in the coefficients of the matrix and the right-hand side.

Theorem 10.11. For k, n ∈ N, let Φ ∈ R
k×n2

, Ψ ∈ R
k×n, p ∈ IR

k,
x̃ ∈ R

n and X ∈ IR
n be given. Define

Z :=
(
RΨ− (x̃T ⊗R)Φ

)
p and ∆ := (I −RA)X (10.47)

and

A(p) := {A : vec(A) = Φp, p ∈ p} and b(p) := {Ψp : p ∈ p}. (10.48)
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Suppose
Z + ∆ ⊂ int(X). (10.49)

Then R and every matrix A ∈ A(p) is non-singular, and the hull of the
structured solution set

Y := hull
(
{x ∈ R

n : Ax = b, A ∈ A(p), b ∈ b(p)}
)

(10.50)

satisfies

x̃+Z+∆ ≤ Y ≤ x̃+Z+∆ and x̃+Z+∆ ≤ Y ≤ x̃+Z+∆. (10.51)

Note again that special care is necessary in the computation of Z in
(10.47): inner bounds for Z are necessary for inner bounds of Y, whereas
for both outer and inner bounds of Y, outer bounds for ∆ are sufficient.

The exact, in general, nonlinear shape (see Figure 10.3) of the solution
set for symmetric and other linear dependencies has been characterized by
Alefeld, Kreinovich and Mayer (1997, 2003).

10.8. Sparse linear systems

For general dense linear systems, verification algorithms generally compute
an inclusion if Gaussian elimination in floating-point arithmetic provides at
least one correct digit. The computing time for the verification algorithm
is within an order of magnitude of Gaussian elimination. Unfortunately, for
general sparse linear systems such an algorithm is not known, one major
open problem of verification algorithms.

For sparse linear systems Algorithm 10.7 is, in general, not suitable be-
cause the inverse of a sparse matrix is likely to be dense. For symmetric
positive definite matrices, verified error bounds can be computed effectively
using the following methods by Rump (1994). But already for indefinite
symmetric problems, the known approaches may fail for reasonable condi-
tion number and/or require extensive computational time. Moreover, the
field of verification algorithms based on iterative methods is basically a
blank slate.

For didactic purposes, we let there be given a symmetric positive defi-
nite matrix A. Later it is seen that this significant assumption is proved
a posteriori by the proposed algorithm.

Let A ∈ R
n×n and b, x̃ ∈ R

n be given. As for (10.8) we note that

‖A−1b− x̃‖2 ≤ ‖A−1‖2 · ‖b−Ax̃‖2 =
‖b−Ax̃‖2
σn(A)

, (10.52)

where ‖ · ‖2 denotes the spectral norm and σ1(A) ≥ · · · ≥ σn(A) denote the
singular values of A. Thus a lower bound on the smallest singular value
of A yields a bound on the error of x̃. We use the following well-known
perturbation result given by Wilkinson (1965, p. 99 ff.).
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Lemma 10.12. Let the eigenvalues of a symmetric matrix A be denoted
by λ1(A) ≥ · · · ≥ λn(A). Let symmetric A,E ∈ R

n×n be given. Then

λi(A) + λn(E) ≤ λi(A+ E) ≤ λi(A) + λ1(E) for 1 ≤ i ≤ n. (10.53)

Let α ∈ R be an approximation of σn(A), and set α̃ := 0.9 · α. Further,
let G ∈ R

n×n and define E := A− α̃I −GTG. Then Lemma 10.12 implies

λn(A− α̃I) ≥ λn(GTG) + λn(E) ≥ −‖E‖2 or λn(A) ≥ α̃− ‖E‖2 := µ.
(10.54)

If µ > 0 it follows that A is symmetric positive definite and

σn(A) ≥ µ. (10.55)

For practical applications, it suffices to compute an upper bound for ‖E‖2
which is readily obtained by evaluating ‖A− α̃I −GTG‖1 in interval arith-
metic, or with the methods given in Section 10.11. The obvious choice for
G is an approximate Cholesky factor of A − α̃I. Note that only the input
data is used corresponding to the Utilize input data principle (5.13).

The Cholesky decomposition allows one to estimate all rounding errors
effectively to obtain an a priori bound without calculating A− α̃I −GTG,
resulting in an efficient verification method.

10.8.1. Verification of positive definiteness
Following Demmel (1989) we use pure floating-point arithmetic to verify
positive definiteness of A− α̃I and to obtain a lower bound σn(A) ≥ α̃. It
is another typical example of the design of a verification method following
the Design principle (DP) (1.1) and the Utilize input data principle
(5.13). It is much faster than (10.54), albeit with a more restricted range
of applicability.

When executing Cholesky decomposition in floating-point arithmetic and,
for the moment, barring underflow, successive applications of Theorem 2.1
imply, for the computed factor G̃,

G̃T G̃ = A+ ∆A with |∆A| ≤ diag(γ2, . . . , γn+1)|G̃T ||G̃|, (10.56)

where γk := ku/(1 − ku) is defined as in Theorem 2.1. Cholesky decom-
position is a very stable algorithm, and no pivoting is necessary, so the
size of |∆A| can be estimated by G̃ and the input data. If the Cholesky
decomposition runs to completion, then ajj ≥ 0, and one can show

‖g̃j‖22 = g̃T
j g̃j ≤ ajj + γj+1 |g̃T

j | |g̃j | = ajj + γj+1 g̃
T
j g̃j , (10.57)

where g̃j denotes the jth column of G̃. Therefore

‖g̃j‖22 ≤ (1− γj+1)−1ajj =: dj ,
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Table 10.10. Smallest singular value for which isspd verifies positive definiteness.

Full matrices Sparse matrices
Dimension α/‖A‖2 Time (sec) Dimension α/‖A‖2 Time (sec)

100 1.5 · 10−13 0.003 5000 3.5 · 10−11 0.06
200 5.9 · 10−13 0.009 10000 1.2 · 10−10 0.22
500 3.6 · 10−12 0.094 20000 5.1 · 10−10 1.0

1000 1.4 · 10−11 0.38 50000 3.2 · 10−9 11.9
2000 5.6 · 10−11 2.1 100000 9.1 · 10−9 84

and setting dj := (γj+1(1− γj+1)−1 ajj)1/2 and k := min(i, j), we have

|∆aij | ≤ γk+1 |g̃T
i | |g̃j | ≤ γ

1/2
i+1 ‖g̃i‖2 γ1/2

j+1 ‖g̃j‖2 ≤ di dj , (10.58)

so that d := (d1, . . . , dn) implies

‖∆A‖ ≤ ‖ |∆A| ‖ ≤ ‖d dT ‖ = d
T
d =

n∑
j=1

γj+1(1− γj+1)−1 ajj . (10.59)

Lemma 10.13. Let symmetric A ∈ F
n×n be given, and suppose Cholesky

decomposition, executed in floating-point arithmetic satisfying (2.3), runs
to completion. Then, barring over- and underflow, the computed G̃ satisfies

G̃T G̃ = A+ ∆A with ‖∆A‖ ≤
n∑

j=1

ϕj+1ajj , (10.60)

where ϕk := γk(1− γk)−1.

Note that corresponding to the Solvability principle of verifica-
tion methods (1.2) positive definiteness (and indefiniteness) can be ver-
ified if the smallest singular value is not too small in magnitude. For a
singular matrix, neither is possible in general.

With some additional work covering underflow, Lemma 10.13 leads to
algorithm isspd in INTLAB: a quantity α̃ based on

∑n
j=1 ϕj+1ajj in (10.60)

and covering underflow can be computed a priori , and if the floating-point
Cholesky decomposition applied to A − α̃I runs to completion, then A is
proved to be positive definite.

For an interval input matrix A, algorithm isspd verifies positive definite-
ness of every symmetric matrix within A. But rather than working with
the interval matrix, the following lemma is used.

Lemma 10.14. Let A = [M − R,M + R] ∈ IR
n×n with symmetric ma-

trices M,R ∈ R
n×n be given. If, for some c ∈ R, M − cI is positive definite

for ‖R‖2 ≤ c, then every symmetric matrix A ∈ A is positive definite.
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Table 10.11. Results and ratio of computing time for sparse linear systems.

Double-precision residual Improved residual

Dimension Inclusion of A−1
11 Time ratio Inclusion of A−1

11 Time ratio

10000 0.302347266456 5.0 0.3023472664558 6.5
40000 0.30234727323 4.7 0.302347273226 6.3

250000 0.3023472737 4.2 0.30234727367 5.3

Moreover, for every positive vector x ∈ R
n,

‖R‖2 ≤
√
µ with µ := max

i

(RT (Rx))i

xi
. (10.61)

Proof. Lemma 10.12 implies that |σi(A+∆)−σi(A)| ≤ ‖∆‖2 for symmetric
A,∆ ∈ R

n×n, and ‖∆‖2 ≤ ‖ |∆| ‖2 proves that all A ∈ A are positive
definite. Collatz (1942) showed that µ is an upper bound for the Perron
root of (the non-negative matrix) RTR, and the result follows.

The applicability of Lemma 10.13 is tested by generating a numerically
singular symmetric matrix A by B = randn(n, n− 1); A = B ∗ B′; and finding
the smallest α > 0 for which positive definiteness of A−αI can be verified.
The results for dense and sparse matrices (with about 5 non-zero elements
per row) are displayed in Table 10.10; computations are performed on a
1.6 GHz laptop in MATLAB.

Estimating ∆A = G̃T G̃ − A in (10.60) using interval arithmetic takes
more computing time, but positive definiteness can be verified for α/‖A‖2
almost of size u.

10.8.2. Solution of sparse linear systems with s.p.d. matrix
As before, let α ∈ R be an approximation of σn(A), and denote α̃ := 0.9·α. If
positive definiteness of A− α̃I can be verified (using isspd), then ‖A‖2 ≥ α̃
and (10.52) can be applied.

This algorithm is implemented in verifylss in INTLAB for sparse input
data. For a five-point discretization A of the Laplace equation on the unit
square, we compute A−1

11 and display the results in Table 10.11.
The time for the MATLAB call A\b is normed to 1, and the results are

shown with residual computed in double precision and with the improved
residual by Algorithm 10.4. For this well-conditioned linear system, the
floating-point approximation is also accurate. For some test matrices from
the Harwell–Boeing test case library, the numbers are given in Table 10.12
(the name of the matrix, the dimension, number of non-zero elements, time
for MATLAB A\b normed to 1, and median relative error of the inclusion
are displayed using the improved residual).
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Table 10.12. Computational results for Harwell–Boeing test matrices.

Matrix Dimension Non-zero elements Time ratio Median relative
error of inclusion

bcsstk15 3948 117816 7.69 1.3 · 10−5

bcsstk16 4884 290378 11.41 2.9 · 10−7

bcsstk17 10974 428650 9.37 4.1 · 10−5

bcsstk18 11948 149090 9.50 5.0 · 10−5

bcsstk21 3600 26600 7.00 2.0 · 10−11

bcsstk23 3134 45178 7.85 1.8 · 10−3

bcsstk24 3562 159910 15.02 6.8 · 10−5

bcsstk25 15439 252241 7.49 1.3 · 10−3

bcsstk28 4410 219024 13.13 3.5 · 10−7

For matrices with small bandwidth, however, the verification is signifi-
cantly slower than the pure floating-point computation. For example, com-
puting inclusions of the first column of A−1 for the classic second difference
operator on n points gives the results in Table 10.13. For such special
matrices, however, specialized verification methods are available.

However, no stable and fast verification method for reasonably ill-con-
ditioned matrices is known for symmetric (or general) matrices. There are
some methods based on an LDLT -decomposition along the lines of (10.54)
discussed in Rump (1994); however, the method is only stable with some
pivoting, which may, in turn, produce significant fill-in. The problem may
also be attacked using the normal equations ATAy = AT b, but this squares
the condition number. To be more specific, we formulate the following
challenge.

Challenge 10.15. Derive a verification algorithm which computes an in-
clusion of the solution of a linear system with a general symmetric sparse
matrix of dimension 10 000 with condition number 1010 in IEEE754 double
precision, and which is no more than 10 times slower than the best numerical
algorithm for that problem.

For more challenges see Neumaier (2002).

10.9. Special linear systems

If the matrix of a linear system has special properties, adapted methods may
be used. For example, the discretization of an elliptic partial differential
equation leads in general to an M -matrix, i.e., a matrix of the form A :=
cI −B with non-negative B and �(B) < c.
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Table 10.13. Results and ratio of computing
time for the classic second difference operator.

Dimension Time ratio Median relative
error of inclusion

10000 79.6 1.24 · 10−7

30000 94.0 2.99 · 10−6

100000 92.8 6.25 · 10−5

300000 151.9 6.03 · 10−4

1000000 147.0 1.86 · 10−2

In this case it is well known that A−1 > 0 and thus ‖A−1‖∞ = ‖A−1e‖∞
for the vector e of all ones. Hence for ỹ ∈ R

n it follows that

‖A−1‖∞ = ‖ỹ +A−1(e−Aỹ)‖∞ ≤ ‖ỹ‖+ ‖A−1‖∞‖e−Aỹ‖∞
(see Ogita, Oishi and Ushiro (2001)), and therefore, along the lines of (10.8),

‖A−1b− x̃‖∞ ≤ ‖A−1‖∞‖b−Ax̃‖∞ ≤ ‖ỹ‖∞
1− ‖e−Aỹ‖∞

‖b−Ax̃‖∞ (10.62)

for x̃ ∈ R
n. For given approximate solutions ỹ of Ay = e and x̃ of Ax = b,

this is an O(n2) bound of good quality.
An interval matrix A is called an H-matrix if Av > 0 for some positive

vector v. Note that by (9.4) the interval and power set product Av coincide.
Moreover, Ostrowski’s comparison matrix 〈A〉 ∈ R

n×n for interval matrices
is defined by

〈A〉ij :=

{
min{|α| : α ∈ Aij} for i = j,

−max{|α| : α ∈ Aij} otherwise.
(10.63)

In fact, all matrices A ∈ 〈A〉 are M -matrices. It follows that

|A−1| ≤ 〈A〉−1 for all A ∈ A (10.64)

(see Neumaier (1990)).
If the midpoint matrix of A is a diagonal matrix, i.e., off-diagonal in-

tervals are centred around zero, then the exact solution set can be charac-
terized. This remarkable result is known as the Hansen–Bliek–Rohn–Ning–
Kearfott–Neumaier enclosure of an interval linear system. Recall that for a
general linear system with interval matrix A, it is an NP-hard problem to
compute narrow bounds for the solution set defined in (10.15) (Rohn and
Kreinovich 1995).
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Theorem 10.16. Let A ∈ IR
n×n be an H-matrix, and let b ∈ IR

n be a
right-hand side. Define

u := 〈A〉−1|b| ∈ R
n, di := (〈A〉−1)ii ∈ R, (10.65)

and

αi := 〈A〉ii − 1/di, βi := ui/di − |bi|. (10.66)

Then the solution set Σ(A,b) = {x ∈ R
n : Ax = b for A ∈ A, b ∈ b} is

contained in the interval vector X with components

Xi :=
bi + [−βi, βi]
Aii + [−αi, αi]

. (10.67)

Moreover, if the midpoint matrix of A is diagonal, then

hull(Σ(A,b)) = X.

In practice, Theorem 10.16 is applied to a preconditioned linear system
with matrix RA and right-hand side Rb, where R is an approximation of
the inverse of mid(A).

It is likely that the midpoint of RA is not far from the identity ma-
trix. However, even using exact arithmetic with R := mid(A)−1 so that
mid(RA) = I, the solution set Σ(RA, Rb) is only a superset of Σ(A,b)
due to data dependencies. So this approach offers no means to attack the
original NP-hard problem.

This approach is slower than Algorithm 10.7; therefore it is used in
verifylss in INTLAB as a ‘second stage’ if the verification using Algo-
rithm 10.7 fails.

10.10. The determinant

As another example for the Design principle of verification methods
(1.1), consider the determinant of a matrix.

About the worst one can do is to perform Gaussian elimination in interval
arithmetic (IGA). Instead one may proceed as follows:

[L,U,p] = lu(A,’vector’); % approximate factorization of A
Linv = inv(L); Uinv = inv(U); % approximate preconditioners
C = Linv*(A(p,:)*intval(Uinv)); % inclusion of preconditioned matrix
D = prod(gershgorin(C)); % inclusion of det(Linv*A(p,:)*Uinv)

The first statement calculates approximate factors L, U such that A(p, :) ≈
LU for a permutation vector p. Multiplying A(p, :) from the left and right
by approximate inverses of L and U results approximately in the identity
matrix, the determinant of which can be estimated by the (complex interval)
product of the Gershgorin circles.
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Most of the computations are performed in floating-point arithmetic: only
the computation of C and D is performed in interval arithmetic. A typical
result for a 1000× 1000 random matrix is

intval D =
< 1.00000000000008 + 0.00000000000000i, 0.00000062764860>

where the complex result is displayed by midpoint and radius. Since the
input matrix was real, so must be the determinant resulting in

det(Linv ∗ A(p, :) ∗ Uinv) ∈ [0.99999937, 1.00000063].

Now det(L) = det(Linv) = 1 and det(A) (or, better, log det(A) to avoid
over- or underflow) is easily and accurately computed.

Note that the approach applies to interval matrices as well, by comput-
ing an approximate decomposition of the midpoint matrix and otherwise
proceeding as before.

10.11. The spectral norm of a matrix

Any non-trivial vector x ∈ R
n yields a lower bound of ‖A‖2 by evaluating

‖Ax‖2/‖x‖2 in interval arithmetic, so the best numerical algorithm at hand
may be used to compute a suitable x. However, an upper bound seems
non-trivial.

If A is symmetric and α ≈ ‖A‖2 is given, then Lemma 10.13 may be
applied to verify that α̃I − A and α̃I + A are positive definite for some
α̃ > α, thus verifying ‖A‖2 ≤ α̃.

Let a general matrix A be given, together with an approximation α ≈
‖A‖2. Using perturbation bounds similar to Lemma 10.12, it is not difficult
to compute an inclusion of a singular value of A near α. However, there is
no proof that this is the largest singular value.

But in this case there is no problem using AHA in the above approach,
i.e., verifying that α̃2I − AHA is positive definite to prove ‖A‖2 ≤ α̃ ; the
squared condition number has no numerical side effect.

The cost of a verified upper bound of ‖A‖2, however, is O(n3), whereas
a few power iterations on AHA require some O(n2) operations and usually
lead to an accurate approximation of ‖A‖2. For a verified upper bound,
the standard estimations ‖A‖2 ≤

√
‖A‖1‖A‖∞ or ‖A‖2 ≤ ‖A‖F are some-

times weak. Also, ‖A‖2 ≤ ‖|A|‖2 together with (10.61) is often weak.

Challenge 10.17. Given A ∈ R
n×n, derive a verification algorithm to

compute an upper bound for ‖A‖2 with about 1% accuracy in O(n2) oper-
ations.

A verified lower bound is easy to compute in O(n2) operations, but I find
it hard to believe that there is such a method for an upper bound of ‖A‖2.
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11. Automatic differentiation

For enclosing solutions of systems of nonlinear equations we need to approx-
imate the Jacobian of nonlinear functions and to compute the range of the
Jacobian over some interval.

The method of ‘automatic differentiation’ accomplishes this. Because this
is mandatory for the following, we want to make at least a few remarks here.
For a thorough discussion see Rall (1981), Corliss et al. (2002) and the Acta
Numerica article by Griewank (2003).

11.1. Gradients

The method was found and forgotten several times, starting in the 1950s.
When giving a talk on automatic differentiation in the 1980s, the audience
would usually split in two groups, one not understanding or believing in the
method and the other knowing it. The reason is that it seems, at first sight,
not much more than the classical differentiation formulas (uv)′ = u′v + uv′
or g(f(x))′ = g′(f(x))f ′(x).

One way to understand it is similar to the concept of differential fields.
Define a set D of pairs (a, α) ∈ R

2, and define operations +,−, ·, / on D by

(a, α)± (b, β) := (a+ b, α± β),
(a, α) · (b, β) := (a · b, αb+ aβ),
(a, α)/(b, β) := (a/b, (α− aβ/b)/b),

(11.1)

with non-zero denominator assumed in the case of division. Let a differen-
tiable function f : R → R be given by means of an arithmetic expression A
in one independent variable x, so that A(x) = f(x).

When replacing constants c ∈ R in A by (c, 0), then evaluating A((x̃, 1))
for some x̃ ∈ R using (11.1) yields a pair (r, ρ) with property f(x̃) = r and
f ′(x̃) = ρ, provided no division by 0 has occurred.

Using a programming language with an operator concept, the implemen-
tation is particularly simple, basically implementing (11.1). Standard func-
tions are easily added, for example,

e(b,β) := (eb, β eb),
cos(b, β) := (cos(b),−β sin(b)).

(11.2)

Replacing all operations again by the corresponding interval operations and
successively applying the inclusion property (5.16), it is clear that an inclu-
sion of the range of a function and its derivative over some interval X is
obtained as well. For example, for the function f given in (8.4), an inclusion
of the range of f and f ′ over X := [2.4, 2.5] is obtained by

f = inline(’sin(2*x^2/sqrt(cosh(x))-x)-atan(4*x+1)+1’);
Y = f(gradientinit(intval(’[2.4,2.5]’)))
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intval gradient value Y.x =
[ -0.2435, 0.3591]
intval gradient derivative(s) Y.dx =
[ -1.1704, -0.0736]

The function gradientinit(x) initializes the gradient operator, i.e., re-
places constants c by (c, 0) and replaces the argument x by (x, 1). It follows
that −1.1704 ≤ f ′(x) ≤ −0.0736 for all x ∈ [2.4, 2.5]. Note that the no-
tation intval(’[2.4,2.5]’) is necessary to obtain a true inclusion of X
because 2.4 /∈ F. As always, the inclusions are rigorous but may be subject
to overestimation.

In an environment with operator concept such as MATLAB we can conve-
niently define a function and, depending on the input argument, obtain an
approximation or an inclusion of the range of the function and the deriva-
tive. From the definitions (11.1) and (11.2) it is clear that the computing
time for the function value and its derivative is less than about 5 times the
computing time for only the function value.

Some care is necessary if a program contains branches. For example,

function y = f(x)
if x==3, y=9; else y=x^2; end

is an unusual but correct implementation for the function f(x) = x2. A
straightforward automatic differentiation program will, however, deliver
f ′(3) = 0.

Applying the discussed principles to n independent variables x1, . . . , xn

successively, an approximation and also an inclusion of the gradient or the
Hessian of a function f : R

n → R is obtained. This is called the forward
mode. The computing time for the gradient, however, is up to 5n times
that for a function evaluation.

11.2. Backward mode

A major breakthrough of automatic differentiation was the so-called back-
ward mode, in which the time to compute the function and gradient is not
more than 5 times as much as only the evaluation of the function. This is
independent of the dimension n. The idea is as follows.

Assume we are given an arithmetic expression A to evaluate a function
f : R

n → R at x ∈ R
n. Denote the result of each intermediate operation in

A by xi for n+1 ≤ i ≤ n+m, so that the evaluation consists of m steps and
xn+m is the final result f(x). Collecting the initial vector x and the vector
of intermediate results in one vector, the evaluation of A(x) corresponds to
successive computation of

y(k) = Φk(y(k−1)) for k = 1, . . . ,m, (11.3)

with the initial vector y(0) = (x, 0)T ∈ R
n+m and xn+k = eTn+ky

(k). The
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functions Φk : R
n+m → R

n+m correspond to a basic arithmetic operation
or standard function on already computed quantities. In other words, Φk

depends only on components 1, . . . , n+ k − 1 of y(k−1). Therefore

f(x) = eTn+m · Φm ◦ . . . ◦ Φ1

((
x

0

))
, (11.4)

with 0 denoting a vector of m zeros, and

∇f(x) = eTn+m · Φ′
m(y(m−1)) · · ·Φ′

1(y
(0)) ·

(
I

0

)
, (11.5)

with 0 denoting the m × n zero matrix. The Jacobians Φ′
k(y

(k−1)) ∈
R

(n+m)×(n+m) have a very simple structure corresponding to the opera-
tions they are associated with. Note that m corresponds to the number of
intermediate steps in the evaluation of A, and n corresponds to the number
of unknowns.

One can see that the forward mode corresponds to the evaluation of (11.5)
from right to left, so that each operation is a (p× p) times (p× n) matrix–
matrix multiplication with p := n + m. However, when evaluating (11.5)
from left to right, each operation is a (p×p) matrix multiplied by a p-vector
from the left. This is the backward mode.

The remarkable speed of backward automatic differentiation comes at a
price. While the forward mode is straightforward to implement with an
operator concept at hand, the implementation of the backward mode is in-
volved. However, packages are available that transform a computer program
for evaluating a function into another program for evaluating the function
together with the gradient and/or Hessian (in the fast backward mode); see,
for example, Bischof, Carle, Corliss and Griewank (1991). For the range es-
timation of derivatives, however, forward differentiation sometimes gives
much better enclosures than those from the backward mode.

11.3. Hessians

Automatic differentiation in forward mode for gradients and Hessians is
implemented in INTLAB. Consider, for example, the function f : R

2 → R:

f(x, y) := exp(sin(50x)) + sin(60 exp(y)) + sin(70 sin(x)) + sin(sin(80y))

− sin(10(x+ y)) + (x2 + y2)/4. (11.6)

It was Problem 4 of the 10 × 10-digit challenge by Trefethen (2002) to
compute the global minimum of this function over R

2. The INTLAB code

f = inline(’exp(sin(50*x(1))) + sin(60*exp(x(2)))
+ sin(70*sin(x(1))) + sin(sin(80*x(2)))
- sin(10*(x(1)+x(2))) + (x(1)^2+x(2)^2)/4’);

X = verifynlss(f,[-0.02;0.2],’h’)
Y = f(hessianinit(X))



Verification methods 367

evaluates the function value, gradient and Hessian of f over the given X,
resulting in

intval X =
-0.02440307969437
0.21061242715535

intval Hessian value Y.x =
-3.3068686474752_

intval Hessian first derivative(s) Y.dx =
1.0e-011 *
-0.0_____________ 0.______________

intval Hessian second derivative(s) Y.hx =
1.0e+003 *
5.9803356010662_ 0.09578721471459
0.09578721471459 9.895778741947__

The call X = verifynlss(f,[-0.02;0.2],’h’) proves that X is an inclu-
sion of a stationary point (see Section 13), and by Gershgorin’s theorem,
every 2× 2 matrix included in the Hessian is positive definite. This proves
that X contains a strict local minimizer.

Consider the test problem

f(x) :=
n−10∑
i=1

xi

xi+10
+

n∑
i=1

(x− 1)2 −
n−1∑
i=1

xixi+1 = Min!, (11.7)

with initial guess x̃ := (1, . . . , 1)T . Given f implementing the function in
(11.7), the code

n = 2000;
X = verifynlss(@f,ones(n,1),’h’);
H = f(hessianinit(X));
isMin = isspd(H.hx)

computes for n = 2000 an inclusion X of a solution of the nonlinear system
∇f(x) = 0, i.e., of a stationary point x̂ of f , to at least 10 decimal places.
Using isspd as described in Section 10.8, the result isMin = 1 verifies that
every matrix A ∈ H.hx is positive definite, in particular the Hessian of f
at x̂. Therefore, f has a strict (local) minimum in X. The Hessian has
bandwidth 10, and the Gershgorin circles contain 0.

11.4. Taylor coefficients

To obtain higher-order derivatives, Taylor coefficients can be computed
along the previous lines. Here we follow Rall (1981); see also Moore (1966,
Section 11). Let two functions f, g : R → R with f, g ∈ CK be given, and
denote their respective Taylor coefficients at some x̃ ∈ R by

ak :=
1
k!
f (k)(x̃) and bk :=

1
k!
g(k)(x̃),
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for 0 ≤ k ≤ K. Then the Taylor coefficients of selected composite functions
are as follows:

operation Taylor coefficient
c = f ± g ck = ak ± bk
c = f · g ck =

∑k
j=0 ajbk−j

c = f/g ck = 1
b0

(
ak −

∑k
j=1 bjck−j

)
c = exp(f) ck = 1

k

∑k
j=1 jajck−j .

(11.8)

As before, assume a function f is given by means of an arithmetic ex-
pression. Then, initializing constants c by (c, 0, . . . , 0) and the independent
variable x by (x̃, 1, 0, . . . , 0), and replacement of each operation or standard
function by the corresponding Taylor operation or standard function, result
in a vector (r0, . . . , rK) of Taylor coefficients of f at x̃.

In INTLAB, Taylor operations for all functions listed in (7.3) are imple-
mented. Again, replacement of the argument by an interval X computes
inclusions of the Taylor coefficients 1

k!f
(k)(x̃) for x̃ ∈ X. For example, for the

function f given in (8.4), an inclusion of the range of the Taylor coefficients
up to order 4 over X := [2.4, 2.5] is obtained by

f = inline(’sin(2*x^2/sqrt(cosh(x))-x)-atan(4*x+1)+1’);
Y = f(taylorinit(intval(’[2.4,2.5]’),4))
intval Taylor value Y.t =
[ -0.2435, 0.3591]
[ -1.0692, -0.1034]
[ -0.3933, 1.1358]
[ -0.5512, 1.7307]
[ -2.2706, 1.0008]

Note that the inclusion [−1.0692,−0.1034] for f ′([2.4, 2.5]) is narrower
than before.

Along similar lines, ‘automatic Lipschitz estimates’ can also be defined.

11.5. Slopes

Yet another approach uses automatic slopes, introduced by Krawczyk and
Neumaier (1985). For f : R

m → R
n, let x̃ ∈ R

m and X ∈ IR
m be given. The

triple (C,R,S) ∈ IR
n× IR

n× IR
n×m of ‘centre, range and slope’ is a slope

expansion with respect to f , x̃ and X if f(x̃) ∈ C, {f(x) : x ∈ X} ⊆ R,
and

f(x) ∈ f(x̃) + S(x− x̃) for all x ∈ X. (11.9)

Note that x̃ ∈ X is not necessary. An automatic slope package, which is
contained in INTLAB, initializes constants c by the point interval (c, c, 0),
and the ith independent variable by (x̃i,Xi, ei). This satisfies (11.9), and
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Figure 11.1. Visualization of slope for
f(x) =

√
|x| − 0.5 and x̃ = −2, X = [−1, 1].

automatic slopes are computed by defining arithmetic operations and stan-
dard functions appropriately.

As an example for f(x) =
√
|x| − 0.5 and x̃ = −2, X = [−1, 1], the slope

expansion is computed by

f=inline(’sqrt(abs(x))-0.5’); y=f(slopeinit(-2,infsup(-1,1)))
slope intval center y.c =

0.9142
slope intval range y.r =
[ -0.5000, 0.5000]
slope intval slope y.s =
[ -0.7072, -0.1380]

and visualized in Figure 11.1.21 The derivative over X is [−∞,∞], but the
slope is finite. Slopes offer some possibility for computing inclusions when
the Jacobian contains singular matrices; the practical use, however, seems
to be limited.

11.6. Range of a function

Gradients and slopes may be used to improve bounds for the range of a
function over narrow intervals. For, given f : R → R and X = [m−r,m+r]

21 Generated by slopeplot(’sqrt(abs(x))-0.5’,-2,infsup(-1,1),[],10000).
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Table 11.1. Range estimation and overestimation for the function f as in
(8.4) and mid(X) = 2.

rad(X) True range R d(X1)/d(R) d(X2)/d(R) d(X3)/d(R)

10−6 [0.3904, 0.3905] 5.86 1.00 1.00
10−4 [0.3903, 0.3906] 5.86 1.00 1.00
10−2 [0.3839, 0.3969] 5.86 1.21 1.03
0.1 [0.3241, 0.4520] 5.81 3.56 1.31
0.5 [0.0794, 0.5656] 4.22 18.1 3.16
1 [−0.0425, 0.5656] 3.49 148 3.49
2 [−0.2959, 0.5656] 3.17 2041 3.17

∈ IR, we obviously have

Range(f,X) := {f(x) : x ∈ X} ⊆ f(m) + f ′(X)[−r, r]. (11.10)

Hansen (1969) showed that the overestimation of this ‘centred form’ con-
verges quadratically to zero for small radii of X. However, the overestima-
tion also increases quadratically for larger radii.

Another possibility for bounding Range(f,X) uses slopes, as described
in Section 11.5. The following code computes inclusions for Range(f,X)
by directly using interval operations, by the centred form (11.10) and by
slopes:

X1 = f(X); % naive interval arithmetic
y = f(gradientinit(m)); % gradient inclusion of f(m)
Y = f(gradientinit(X)); % gradient inclusion of f’(X)
X2 = y.x + Y.dx*infsup(-r,r); % inclusion by centred form
y = f(slopeinit(m,X)); % slope w.r.t. (m,X)
X3 = y.r; % inclusion by slopes

We compute the overestimation by means of the ratio of diameters of the
computed inclusion and the true range for our model function f in (8.4).
Table 11.1 displays the results for input interval X with mid(X) = 2 and
different radii rad(X). For small radii both the centred form and the slope
inclusion are almost optimal, whereas naive interval evaluation shows some
overestimation. For larger radii it is the other way around for the cen-
tred form, whereas direct evaluation and the slope inclusion show moderate
overestimation.

For arbitrarily wide input interval, the range of the sine function is always
bounded by [−1, 1]. While oscillations may be a problem for numerical
approximations, they can be advantageous for interval evaluation.

The picture changes completely when changing the first sine function in
the definition (8.4) of f into the hyperbolic sine, which is then the function



Verification methods 371

Table 11.2. Range estimation and overestimation for the function g as in
(8.6) and mid(X) = 2.

rad(X) True range R d(X1)/d(R) d(X2)/d(R) d(X3)/d(R)

10−6 [3.6643, 3.6644] 6.33 1.00 1.00
10−4 [3.6639, 3.6649] 6.33 1.00 1.00
10−2 [3.6166, 3.7122] 6.34 1.18 1.04
0.1 [3.1922, 4.1434] 7.15 4.3 1.35
0.5 [1.5495, 5.8700] 89 778 4.28
1 [0.2751, 6.7189] 5.6 · 104 5.0 · 106 36.5
2 [−0.2962, 6.7189] 5.6 · 1012 9.8 · 1015 3.3 · 1011

defined in (8.6). From the graphs in Figure 8.2 and Figure 8.3 we know that
both functions behave similarly over the interval [0, 4]. However, interval
evaluation for the same data as in Table 11.1 for the function g produces
the results shown in Table 11.2.

Clearly interval arithmetic is no panacea, particularly for wide input in-
tervals. It is the main goal of verification methods to use appropriate math-
ematical tools to avoid such situations. For more details see Ratschek and
Rokne (1984) or Neumaier (1990).

12. Quadrature

A direct application of the possibility of computing inclusions of Taylor
coefficients is the inclusion of an integral. Often it suffices to merely im-
plement a known error estimate using interval arithmetic. This is one (of
the not so common) examples where naive evaluation in interval arithmetic
is applicable. The following error estimate for Kepler’s Faßregel (published
in 1615, but commonly known as Simpson’s [1710–1761] formula) was al-
ready known to James Stirling [1692–1770]; the computation of verified error
bounds appeared in Sunaga (1956).

Theorem 12.1. For [a, b] ∈ IR let f : [a, b] → R with f ∈ C4 be given.
For even n ∈ N, define xi := a+ ih for 0 ≤ i ≤ n and h := (b− a)/n. Then∫ b

a
f(x) dx =

h

3
(
f(x0)+4f(x1)+2f(x2)+· · ·+4f(xn−1)+f(xn)

)
−E (12.1)

with

E :=
h4

180
(b− a)f (4)(ξ) for some ξ ∈ [a, b]. (12.2)

For a given function f , for a, b and some n the application is straightfor-
ward, for example by the following code.
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Table 12.1. Integral of f and g as in (8.4) and (8.6).

Approximation by quad Verification by verifyquad

Function Approximation Time (sec) Inclusion Time (sec)

f as in (8.4) 0.563112654015933 0.025 0.56311260
58 0.410

g as in (8.6) 12.711373479890620 0.030 12.711380
64 0.363

Algorithm 12.2. Computation of X including
∫ b
a f(x) dx:

D = b-intval(a); H = D/n;
x = a + intval(0:n)/n*D;
w=2*ones(1,n+1); w(2:2:n)=4; w(1)=1; w(n+1)=1;
V = sum( H/3 * w .* f(intval(x)) );
Y = f(taylorinit(infsup(a,b),4)); % inclusion of approximation
E = H^4*D/180 * Y.t(4); % error term
X = V - E; % inclusion of integral

A more sophisticated algorithm, verifyquad, is implemented in INTLAB
based on a Romberg scheme with error term and automatic choice of n,
depending on the behaviour of the function.

If the input function is well behaved, the verification algorithm is slower
than an approximate routine. For example, the integral of f and g as defined
in (8.4) and (8.6) over [0, 4] is approximated by the MATLAB routine quad
and included by verifyquad using default parameters. The results are
shown in Table 12.1.22

One of the main problems of a numerical integration routine, namely the
stopping criterion, is elegantly solved by interval arithmetic: The verifi-
cation algorithm stops (to increase n, for example) when the inclusion is
(provably) good enough or does not improve. As an example, consider∫ 8

0
sin(x+ ex) dx (12.3)

with the results displayed in Table 12.2. Note that e8 ≈ 949π.
Note that no digit of the MATLAB approximation is correct, and no

warning is given by MATLAB. Presumably, some internal results in the
MATLAB routine quad were sufficiently close to make quad stop without
warning. As in (1.4) for the example in (1.3), even coinciding results com-
puted in different ways give no guarantee of correctness.

22 Note that the MATLAB routine quad requires the function to be specified in ‘vectorized’
form, e.g., f as in (8.4) by
f=vectorize(inline(’sin(2*x^2/sqrt(cosh(x))-x)-atan(4*x+1)+1’));
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Table 12.2. Integral of f as in (12.3) using the MATLAB
routine quad, Algorithm 12.2 and verifyquad.

Result Time (sec)

quad 0.2511 1.77

Algorithm 12.2 n = 210 [−0.47, 1.01] 0.07
n = 212 0.329

2 0.12
n = 214 0.34742

39 0.17
n = 216 0.3474003

1 0.60
n = 218 0.3474001729

5 2.26

verifyquad 0.34740018
6 2.66

The presented Algorithm 12.2 is a first step. More serious algorithms han-
dle singularities within the range of integration and may integrate through
the complex plane: see Corliss and Rall (1987), Petras (2002), Okayama,
Matsuo and Sugihara (2009) and Yamanaka, Okayama, Oishi and Ogita
(2009).

13. Nonlinear problems

Let a nonlinear system f(x) = 0 with differentiable function f : D → R
n

with D ∈ IR
n be given. We assume a MATLAB program f be given such

that f(x) evaluates f(x). Using the INTLAB operators, according to the
type of the argument x, an approximation or inclusion of the function value
or gradient or Hessian is computed.

Let x̃ ∈ D be given. Denote the Jacobian of f at x by Jf (x). Then, by the
n-dimensional Mean Value Theorem, for x ∈ D, there exist ξ1, . . . , ξn ∈ x∪x̃,
the convex union of x and x̃, with

f(x) = f(x̃) +


∇f1(ξ1)

· · ·
∇fn(ξn)


(

x− x̃
)
, (13.1)

using the component functions fi : Di → R. As is well known, the ξi cannot,
in general, be replaced by a single ξ, so that the matrix in (13.1) is only
row-wise equal to some Jacobian Jf of f .

For X ∈ PR
n, recall that hull(X) ∈ IR

n is defined by

hull(X) :=
⋂
{Z ∈ IR

n : X ⊆ Z}. (13.2)
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For x, x̃ ∈ D, also X := hull(x∪x̃) ⊆ D, and the inclusion property (5.16)
implies

∇f1(ξ1)
· · ·

∇fn(ξn)


 ∈ Jf (X) with Jf (X) := hull

{
Jf (x) : x ∈ X

}
(13.3)

for all ξ1, . . . , ξn ∈ X. Therefore, using interval operations, the Mean Value
Theorem can be written in an elegant way.

Theorem 13.1. Let there be given continuously differentiable f :D→R
n

with D ∈ IR
n and x, x̃ ∈ D. Then

f(x) ∈ f(x̃) + Jf (X)
(
x− x̃

)
(13.4)

for X := hull(x∪x̃).

This allows an interval Newton’s method similar to the univariate version
in Theorem 6.2. The proof is taken from Alefeld (1994).

Theorem 13.2. Let differentiable f : X → R
n with X ∈ IR

n be given.
Suppose all matrices M ∈ Jf (X) are non-singular, and define, for some
x̃ ∈ X,

N(x̃,X) := { x̃−M−1f(x̃) : M ∈ Jf (X)}. (13.5)

IfN(x̃,X) ⊆ X, then X contains a unique root x̂ of f in X. IfN(x̃,X)∩X =
∅, then f(x) �= 0 for all x ∈ X. Moreover, x̂ ∈ N(x̃,X).

Proof. Using

f(x)− f(x̃) =
∫ 1

0

d
dt
f(x̃+ t(x− x̃)) dt,

it follows that

f(x)− f(x̃) = Mx(x− x̃) for Mx :=
∫ 1

0

∂f

∂x
(x̃+ t(x− x̃)) dt ∈ Jf (X)

(13.6)
for all x ∈ X. The function

g(x) := x̃−M−1
x f(x̃) : X→ R

n (13.7)

is continuous, and by assumption {g(x) : x ∈ X} ⊆ X. Therefore Brouwer’s
Fixed-Point Theorem implies existence of x̂ ∈ X with

g(x̂) = x̂ = x̃−M−1
x̂ f(x̃) ∈ N(x̃,X),

so that (13.6) implies f(x̂) = 0. Furthermore, the root x̂ is unique in X by
the non-singularity of all M ∈ Jf (X). Finally, if f(y) = 0 for y ∈ X, then
−f(x̃) = My(y − x̃) by (13.6), so that y = x̃−M−1

y f(x̃) ∈ N(x̃,X).
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To apply Theorem 13.2, first an inclusion J ∈ IF
n×n of Jf (X) is computed

by automatic differentiation. Then an inclusion of ∆ of the solution set
Σ(J, f(x̃)) defined in (10.15) is computed by a verification method described
in Section 10. Note that this implies in particular that all matrices M ∈
Jf (X) are non-singular. If x̃−∆ ⊆ X, then Theorem 13.2 implies existence
and uniqueness of a root x̂ of f in X (and in x̃−∆).

For a practical implementation, first an approximate solution x̃ should
be improved by numerical means. The better x̃, the smaller is the residual
f(x̃) and the more likely is an inclusion.

Next an interval refinement X(k+1) := N(x̃,X(k))∩X(k) may be applied,
starting with the first inclusion X(0) := X.

However, this requires at each step the solution of an interval linear sys-
tem. Therefore, it is in practice often superior to use the following modifi-
cation (Rump 1983) of an operator given by Krawczyk (1969a).

Theorem 13.3. Let there be given continuously differentiable f :D→R
n

and x̃ ∈ R
n, X ∈ IR

n, R ∈ R
n×n with 0 ∈ X and x̃+ X ⊆ D. Suppose

S(X, x̃) := −Rf(x̃) +
{
I −RJf (x̃+ X)

}
X ⊆ int(X). (13.8)

Then R and all matrices M ∈ Jf (x̃ + X) are non-singular, and there is a
unique root x̂ of f in x̃+ S(X, x̃).

Proof. Define g : X→ R
n by g(x) := x−Rf(x̃+x). Then, using x̃ ∈ x̃+X

and Theorem 13.1 implies that

g(x) = x−R
(
f(x̃) +Mx̃+xx

)
= −Rf(x̃) +

{
I −RMx̃+x

}
x ∈ S(X, x̃) ⊆ X

(13.9)
for x ∈ X. By Brouwer’s Fixed-Point Theorem there exists a fixed point
x̂ ∈ X of g, so that Rf(x̃ + x̂) = 0. Moreover, x̂ = g(x̂) ∈ S(X, x̃) by
(13.9). Now Lemma 10.5 applied to (13.8) implies that R and every matrix
M ∈ Jf (x̃ + X) is non-singular, and therefore f(x̃ + x̂) = 0. The non-
singularity of all M ∈ Jf (x̃ + X) implies that f is injective over x̃ + X.

Much along the lines of Algorithm 10.7 with the improvements therein,
the following algorithm computes an inclusion of a solution of the nonlinear
system given by a function f near some approximation xs.

Algorithm 13.4. Verified bounds for the solution of a nonlinear system:

function XX = VerifyNonLinSys(f,xs)
XX = NaN; % initialization
y = f(gradientinit(xs));
R = inv(y.dx); % approximate inverse of J_f(xs)
Y = f(gradientinit(intval(xs)));
Z = -R*Y.x; % inclusion of -R*f(xs)
X = Z; iter = 0;
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Table 13.1. Solution of (13.10) using MATLAB’s fsolve
and INTLAB’s verifynlss.

fsolve verifynlss

Dimension Median Maximum Ratio computing
relative error relative error time

50 5.7 · 10−14 6.1 · 10−16 1.10
100 5.8 · 10−10 6.8 · 10−16 0.70
200 8.0 · 10−8 5.7 · 10−16 0.40
500 2.5 · 10−9 5.7 · 10−16 0.15

1000 2.1 · 10−7 8.4 · 10−16 0.13
2000 2.2 · 10−8 8.1 · 10−16 0.11

while iter<15
iter = iter+1;
Y = hull( X*infsup(0.9,1.1) + 1e-20*infsup(-1,1) , 0 );
YY = f(gradientinit(xs+Y)); % YY.dx inclusion of J_f(xs+Y)
X = Z + (eye(n)-R*YY.dx)*Y; % interval iteration
if all(in0(X,Y)), XX = xs + X; return; end

end

As has been mentioned before, the initial approximation x̃ should be
improved by some numerical algorithm. This is included in the algorithm
verifynlss in INTLAB for solving systems of nonlinear equations. It has
been used for the verified solution of the discretized Emden’s equation shown
in Figure 1.1, and the inclusion of a stationary point of f in (11.6) and (11.7).

The nonlinear function in Algorithm 13.4 may depend on parameters p ∈
R

k, so that an inclusion X ∈ IR
n of a solution of f(p, x) = 0 is computed.

If an interval vector p ∈ IR
k is specified for the parameter vector and an

inclusion X is computed, then for all p ∈ p there exists a unique solution of
f(p, x) = 0 in X. This is an upper bound for the sensitivity of the solution
with respect to finite perturbations of the parameters. Lower bounds for
the sensitivity, i.e., inner inclusions of the solution set as in Section 10.6,
can be computed as well: see Rump (1990).

As another example, consider the discretization of

3ÿy + ẏ2 = 0 with y(0) = 0, y(1) = 20, (13.10)

given by Abbott and Brent (1975). The true solution is y = 20x0.75. As
initial approximation we use equally spaced points in [0, 20]. The results
for different dimensions, comparing fsolve of the MATLAB R2009b Opti-
mization toolbox and verifynlss of INTLAB, are displayed in Table 13.1.
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The third column displays the maximum relative error of the inclusion by
verifynlss. The inclusions are very accurate, so the relative error of the
approximation by fsolve can be estimated.

It seems strange that the inclusion is more accurate than the approxima-
tion. However, verifynlss itself performs a (simplified) Newton iteration,
which apparently works better than fsolve.

In this particular example the verification is even faster than the approxi-
mative routine, except for dimension n = 50. This, however, is by no means
typical. Note that an inclusion of the solution of the discretized problem
(13.10) is computed; verification algorithms for infinite-dimensional prob-
lems are discussed in Sections 15 and 16.

The interval Newton method in Theorem 13.2 requires the solution of a
linear system with interval matrix. We note that assumption (13.8) of The-
orem 13.3 can be verified by solving a linear system with point matrix and
interval right-hand side. Define [mC − rC,mC + rC] := Jf (x̃+X), assume
mC is non-singular and Y is an inclusion of Σ(mC,−f(x̃) + [−rC, rC]X).
Then Y ⊂ int(X) implies (13.8).

To see this, set R := mC−1 and observe

−mC−1f(x̃) +
{
I −mC−1[mC + ∆]

}
x = mC−1

{
−f(x̃)−∆x

}
for x ∈ R

n and ∆ ∈ R
n×n. Applying this to x ∈ X and using |∆| ≤ rC

proves the assertion. Note that the non-singularity of mC follows when
computing Y by one of the algorithms in Section 10.

This little derivation is another example of how to prove a result when
interval quantities are involved: the assertion is shown for fixed but arbitrary
elements out of the interval quantities and the Inclusion principle (5.17)
is used.

Although Algorithm 13.4 works well on some problems, for simple circum-
stances it is bound to fail. For example, if X is wide enough that Jf (X) or
Jf (x̃ + X) contain a singular matrix, then Theorem 13.2 or Theorem 13.3
is not applicable, respectively, because the non-singularity of every such
matrix is proved.

One possibility for attacking this is to use automatic slopes; however,
the practical merit of bounding the solution of nonlinear problems seems
limited. When interval bounds get wider, slopes and their second-order
variants (see Kolev and Mladenov (1997)) become more and more useful.

13.1. Exclusion regions

Verification methods based on Theorem 13.3 prove that a certain interval
vector X ∈ IR

n contains a unique root of a nonlinear function f : R
n → R

n.
A common task, in particular in computer algebra, is to find all roots of f
within some region. In this case a major problem is to prove that a certain
region does not contain a root.
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Jansson (1994) suggested the following. The box X is widened into a
box Y ∈ IR

n with X ⊆ Y. If, for example by Theorem 13.3, it can be
verified that Y contains a unique root of f as well, then f(x) �= 0 for all x ∈
Y\X. This method proves to be useful for diminishing the so-called cluster
effect (Kearfott 1997) in global optimization; see also Neumaier (2004). For
verification of componentwise and affine invariant existence, uniqueness, and
non-existence regions, see Schichl and Neumaier (2004).

13.2. Multiple roots I

Theorem 13.3 proves that the inclusion interval contains a unique root of
the given function. This implies in particular that no inclusion is possible
for a multiple root.

There are two ways to deal with a multiple root or a cluster of roots.
First, it can be proved that a slightly perturbed problem has a true multiple
root, where the size of the perturbation is estimated as well. Second, it can
be proved that the original problem has k roots within computed bounds.
These may be k simple roots, or one k-fold, or anything in-between. The
two possibilities will be discussed in this and the following section.

The proof that the original problem has a k-fold root is possible in exact
computations such as computer algebra systems, e.g., Maple (2009), but it
is outside the scope of verification methods for k ≥ 2, by the Solvability
principle of verification methods (1.2).

We first consider double roots. In the univariate case, for given f : R → R

define

g(x, ε) :=
(
f(x)− ε
f ′(x)

)
with Jacobian Jg(x, ε) =

(
f ′(x) −1
f ′′(x) 0

)
. (13.11)

Then the function F (x) := f(x) − ε̂ satisfies F (x̂) = F ′(x̂) = 0 for a
root (x̂, ε̂)T ∈ R

2 of g. The nonlinear system g(x, ε) = 0 can be solved
using Theorem 13.3, evaluating the derivatives by the methods described in
Section 11.

In the multivariate case, following Werner and Spence (1984), let a func-
tion f = (f1, . . . , fn) : R

n → R
n be given and let x̂ ∈ R

n be such that
f(x̂) = 0 and the Jacobian Jf (x̂) of f at x̂ is singular or almost singular.
Adding a smoothing parameter ε, we define Fε : R

n+1 → R
n by

Fε(x) = f(x)− εek, (13.12)

for fixed k, where ek denotes the kth column of the n × n identity matrix.
In addition, the Jacobian of f is forced to be singular by

Jf (x)y = 0 (13.13)

for y = (y1, . . . , ym−1, 1, ym+1, . . . , yn)T and some fixed m. This defines
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a nonlinear system in 2n unknowns g(x, ε, y) = 0 with

g(x, ε, y) =
(
Fε(x)
Jf (x)y

)
, (13.14)

and again it can be solved using Theorem 13.3 by evaluating the derivatives
using the methods described in Section 11. For g(x̂, ε̂, ŷ) = 0, it follows that
Fε̂(x̂) = 0 and detJFε̂

(x̂) = 0 for the perturbed nonlinear function Fε with
ε := ε̂ in (13.12). The problem was also discussed by Kanzawa and Oishi
(1999b, 1999a) and Rump and Graillat (2009), where some heuristics are
given on the choice of k and m.

The case of multiple roots of univariate functions will first be explained
for a triple root. Let a function f : R → R be given with f (i)(x̃) ≈ 0 for
0 ≤ i ≤ 2 and f ′′′(x̃) not too small. Assume X is an inclusion of a root of f ′′
near x̃ computed by Algorithm 13.4, so that there is x̂ ∈ X with f ′′(x̂) = 0.
Moreover, x̂ is a simple root of f ′′, so f ′′′(x̂) �= 0.

Compute E0,E1 ∈ IR with

f ′(m) + f ′′(X)(X−m) ⊆ E0 and f(m) + f ′(X)(X−m)−E0X ⊆ E1

(13.15)
for some m ∈ X. Then ε̂0 := f ′(x̂) ∈ E0 and ε̂1 := f(x̂)− f ′(x̂)x̂ ∈ E1, and
the function

F (x) := f(x)− ε̂0x− ε̂1 (13.16)

satisfies
F (x̂) = F ′(x̂) = F ′′(x̂) = 0 and F ′′′(x̂) �= 0, (13.17)

so that x̂ is a triple root of the perturbed function F in X.
Following Rump and Graillat (2009), this approach can be applied to

compute an inclusion of a k-fold root of a perturbed function.

Theorem 13.5. Let f : R → R with f ∈ Ck+1 be given. Assume X ∈ IR

is an inclusion of a root x̂ of f (k−1). Let Ej ∈ IR be computed by

Ej = f (k−2−j)(m) + f (k−1−j)(X)(X−m)−
j−1∑
ν=0

Eν

(j − ν)!X
j−ν (13.18)

for some m ∈ X. Then, for 0 ≤ j ≤ k − 2 there exist ε̂j ∈ Ej with

f (k−2−j)(x̂) = ε̂j +
j−1∑
ν=0

ε̂ν

(j − ν)! x̂
j−ν . (13.19)

Define F : R → R by

F (x) := f(x)−
k−2∑
ν=0

ε̂ν

(k − 2− ν)! x
k−2−ν . (13.20)
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Table 13.2. Expansion of g5, in total 7403 characters.

g_5 =
inline(’1+40*sin(x)*cos(x^2/cosh(x)^(1/2))^2*atan(4*x+1)^3

... ... ...
-240*cos(x)^2*sin(x^2/cosh(x)^(1/2))^2*cos(x^2/cosh(x)^(1/2))^2
*sin(x)*atan(4*x+1)’)

Table 13.3. Inclusions of a k-fold root of perturbed gk by verifynlss2 near
x̃ = 0.82.

k X mag(E0) mag(E1) mag(E2) mag(E3)

1 0.81990735694295
3

2 0.819907356944
2 1.28 · 10−13

3 0.81990735696
3 1.30 · 10−11 1.24 · 10−11

4 0.819907358
6 8.85 · 10−10 1.61 · 10−9 1.93 · 10−9

5 failed

Then F (j)(x̂) = 0 for 0 ≤ j ≤ k − 1. If the inclusion X is computed by
a verification method based on Theorem 13.3, then the multiplicity of the
root x̂ of F in X is exactly k.

The methods described in this section are implemented by verifynlss2
in INTLAB. As an example, consider our model function g in (8.6). To
obtain multiple roots, we define gk := g(x)k. Using the symbolic toolbox of
MATLAB, the symbolic expression

expand((sinh(2*x^2/sqrt(cosh(x))-x)-atan(4*x+1)+1)^k)

is specified for gk, that is, the expanded version of g(x)k. For example, part
of the expression for g5 with a total length of the string of 7403 characters
is shown in Table 13.2.

The call verifynlss2(g k, 0.82, k) attempts to compute an inclusion X
of a k-fold root of

G(x) := g(x)− ε0 − ε1x− · · · − εk−2x
k−2

near x̃ = 0.82 and inclusions Eν of the perturbations εν for 0 ≤ ν ≤ k − 2.
Note that, compared with (13.20), the true coefficients εν = ε̂ν(k − 2− ν)!
of xk−2−ν are included. Since, by Figure 8.3, there is a root of g near
x̃ = 0.82, so there is a k-fold root of gk. The computational results are
shown in Table 13.3.



Verification methods 381

The test functions are based on the function g in (8.6). When using f
in (8.4) instead, the results are a little more accurate, and the inclusion of
the 5-fold root does not fail. Note that the results are always verified to be
correct; failing means that no rigorous statement can be made.

Another approach to multiple roots of nonlinear equations going beyond
Theorem 13.5 was presented by Kearfott, Dian and Neumaier (2000). They
derive an efficient way to compute the topological degree of nonlinear func-
tions that can be extended to an analytic function (or to a function that
can be approximated by an analytic function).

13.3. Multiple roots II

The second kind of verification method for a multiple or a cluster of roots is
to verify that, counting multiplicities, there are exactly k roots within some
interval. Note that this does not contradict the Solvability principle of
verification methods (1.2).

Neumaier (1988) gives a sufficient criterion for the univariate case. He
shows that if ∣∣∣∣Re

f (k)(z)
k!

∣∣∣∣ > k−1∑
i=0

∣∣∣∣f (i)(z̃)
i!

∣∣∣∣ ri−k (13.21)

is satisfied for all z in the disc D(z̃, r), then f has exactly k roots in D.
We now discuss the approach by Rump and Oishi (2009). They showed

how to omit the (k − 1)st summand on the right of (13.21), and computed
sharper expressions for the left-hand side. In particular, they gave a con-
structive scheme for how to find a suitable disc D.

Let a function f : D0 → C be given, which is analytic in the open disc D0.
Suppose some x̃ ∈ D0 is given such that x̃ is a numerically k-fold zero, i.e.,

f (ν)(x̃) ≈ 0 for 0 ≤ ν < k (13.22)

and f (k)(x̃) not too small. Note that the latter is not a mathematical
assumption to be verified. For z, z̃ ∈ D0, denote the Taylor expansion by

f(z) =
∞∑

ν=0

cν(z − z̃)ν with cν =
1
ν!
f (ν)(z̃). (13.23)

Let X ⊂ D0 denote a complex closed disc near x̃ such that f (k−1)(x̂) = 0 for
some x̂ ∈ X. It can be computed, for example, by verifynlss in INTLAB
applied to f (k−1)(x) = 0.

We aim to prove that some closed disc Y ⊂ D0 with X ⊆ Y contains
exactly k roots of f . First f is expanded with respect to x̂ and the series is
split into

f(y) = q(y) + g(y)(y − x̂)k and g(y) = ck + e(y) (13.24)
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with

q(y) =
k−2∑
ν=0

cν(y − x̂)ν and e(y) =
∞∑

ν=k+1

cν(y − x̂)ν−k. (13.25)

Note that g is holomorphic in D0, and that ck−1 = 0 by assumption. The
minimum of |g(y)| on Y can be estimated by the maximum of the remainder
term |e(y)|. This is possible by the following, apparently not so well-known
version of a complex Mean Value Theorem due to Darboux (1876).23

Theorem 13.6. Let holomorphic f : D0 → C in the open disc D0 be
given and a, b ∈ D0. Then, for 1 ≤ p ≤ k + 1 there exists 0 ≤ Θ ≤ 1 and
ω ∈ C, |ω| ≤ 1 such that, for h := b− a and ξ := a+ Θ(b− a),

f(b) =
k∑

ν=0

hν

ν!
f (ν)(a) + ω

hk+1

k!
(1−Θ)k−p+1

p
f (k+1)(ξ). (13.26)

The following proof is due to Bünger (2008).

Proof. Set � := |b − a|, which is non-zero without loss of generality, and
define a function g : [0, �]→ a∪ b by g(t) := a+ t b−a

� . Then

|g′(t)| = |b− a|
�

≡ 1.

For

F (x) :=
k∑

ν=0

(b− x)ν

ν!
f (ν)(x),

this means

F ′(x) = f ′(x) +
k∑

ν=1

−(b− x)ν−1

(ν − 1)!
f (ν)(x) +

(b− x)ν

ν!
f (ν+1)(x)

=
(b− x)k

k!
f (k+1)(x).

With this we use |g′(t)| ≡ 1 and |b− g(t)| = �− t to obtain

|F (b)− F (a)| = |F (g(�))− F (g(0))| =
∣∣∣∣
∫ �

0
(F ◦ g)′(t) dt

∣∣∣∣
≤

∫ �

0
|F ′(g(t))| |g′(t)|dt =

∫ �

0

∣∣∣∣ |b− g(t)|kk!

∣∣∣∣ |f (k+1)(g(t))|dt

=
∫ �

0

(�− t)k

k!p(�− t)p−1
|f (k+1)(g(t))|p(�− t)p−1 dt

23 Thanks to Prashant Batra for pointing this out.
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≤ (�− t∗)k−p+1

k!p
|f (k+1)(g(t∗))|

∫ �

0
(−(�− t)p)′ dt

=
(�− t∗)k−p+1�p

k!p
|f (k+1)(g(t∗))|

for 1 ≤ p ≤ k + 1 and some t∗ ∈ [0, �]. For Θ := t∗
� ∈ [0, 1], the last

expression is equal to

�k+1(1−Θ)k−p+1

k!p
|f (k+1)(a+ Θ(b− a))|,

so that there exists complex ω with |ω| ≤ 1 and

f(b)− f(a)−
k∑

ν=1

(b− a)ν

ν!
f (ν)(a) = F (b)− F (a)

= −ω (b− a)k+1

k!
(1−Θ)k−p+1

p
|f (k+1)(a+ Θ(b− a))|.

Using Taylor coefficients as described in Section 11.4, an inclusion of
ck = 1

k!f
(k)(x̂) can be evaluated, and with Theorem 13.6 the remainder

term e(y) in (13.24) can be estimated as well.
Note that there is some freedom to choose p. The choice p = k + 1 gives

the traditional-looking expansion

f(b) =
k∑

ν=0

hν

ν!
f (ν)(a) + ω

hk+1

(k + 1)!
f (k+1)(ξ) with |ω| ≤ 1,

so that

|e(y)| ≤ |b− a|
(k + 1)!

max
z∈∂Y

|f (k+1)(z)| ∀ y ∈ Y. (13.27)

For p = k the interval for Θ may be split to obtain |e(y)| ≤ max(β1, β2)
with

β1 :=
|b− a|
k!

max
|y−x̂|≤ r

2

|f (k+1)(y)| (13.28)

and

β2 :=
|b− a|

2k!
max

|y−x̂|≤r
|f (k+1)(y)|, (13.29)

where r := maxy∈Y |y−x̂|. By the definition (13.24) this gives a computable
lower bound for |g(y)|.

Let a polynomial P (z) ∈ C[z] with P (z) =
∑n

ν=0 pνz
ν be given with

pn �= 0. The Cauchy polynomial C(P ) with respect to P is defined by
C(P ) := |pnx

n|−
∑n−1

ν=0 |pν |xν ∈ R[x]. By Descartes’ rule of signs, C(P ) has
exactly one non-negative root, called the Cauchy bound C(P ). It is well
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known that the Cauchy bound is an upper bound for the absolute value of
all (real and complex) roots of P :

P (z) = 0 ⇒ |z| ≤ C(P ). (13.30)

In fact, it is the best upper bound taking only the absolute values |pν | into
account. Note that the leading coefficient pn must be non-zero.

The Cauchy bound can be defined for interval polynomials as well. For
P(z) ∈ IK[z] with P(z) =

∑n
ν=0 pνz

ν , pν ∈ IK and K ∈ {R,C}, define

C(P) := mig(pn)xn −
n−1∑
ν=0

mag(pν)xν ∈ R[x], (13.31)

where mig(pn) := min{|π| : π ∈ pn} and mag(pν) := max{|π| : π ∈ pν}.
Then the unique non-negative root C(P) of C(P) is a root bound for all
polynomials P ∈ P:

P ∈ P and P (z) = 0 ⇒ |z| ≤ C(P). (13.32)

The Cauchy bound for real or complex interval polynomials is easily upper-
bounded by applying a few Newton iterations on C(P) starting at some
other traditional root bound. Note that the iteration converges quickly
to C(P).

Theorem 13.7. Let holomorphic f : D0 → C in the open disc D0 and
fixed k ∈ N be given, and closed discs X,Y ⊂ D0 with X ⊆ Y. Assume
there exists x̂ ∈ X with f (k−1)(x̂) = 0. Define g(y) as in (13.24), and let
G ∈ IC be a complex disc with g(y) ∈ G for all y ∈ Y . Assume 0 /∈ G, and
define the interval polynomial

P(z) := q(z) + G · (z − x̂)k ∈ IC[z]. (13.33)

Denote the closed complex disc with centre m and radius r by D(m; r).
Assume that the Cauchy bound C(P) for P satisfies

D(x̂ ;C(P)) ⊂ int(Y ). (13.34)

Then, counting multiplicities, there are exactly k roots of the function f in
D(x̂ ;C(P)).

Proof. Define the parametrized set of polynomials

Py(z) := q(z) + g(y)(z − x̂)k ∈ C[z]. (13.35)

Note that only the leading term depends on the parameter y. By defi-
nition (13.24) we have f(y) = Py(y). Moreover, Py ∈ P for all y ∈ Y ,
so that g(y) �= 0 and (13.32) imply that Py(z) = 0 is only possible for
z ∈ D(x̂ ;C(P)). Thus (13.34) implies for all y ∈ Y that Py(z) �= 0 for
all z ∈ ∂Y . Next define

Py,t(z) := t · q(z) + g(y)(z − x̂)k (13.36)
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and the homotopy function

ht(y) := Py,t(y) = t · q(y) + g(y)(y − x̂)k. (13.37)

Since q is a polynomial and g is holomorphic, all functions ht are holomor-
phic as well. The definition of the Cauchy bound implies

C(Py,t) ≤ C(Py) ≤ C(P) (13.38)

for all t ∈ [0, 1] and all y ∈ Y . Thus definition (13.37) implies that for
all t ∈ [0, 1] we have ht(y) �= 0 for all y ∈ ∂Y . We conclude that all holo-
morphic functions ht must have the same number of roots in Y , in particular
h0 and h1.

For t = 0 we have h0(y) = g(y)(y − x̂)k, which has exactly k roots in Y
because g(y) �= 0 for all y ∈ Y . Hence

h1(y) = q(y) + g(y)(y − x̂)k = Py(y) = f(y)

must have exactly k roots in Y . By (13.38), for all t ∈ [0, 1] and all y ∈ Y ,
all roots of Py,t(z) lie in D(x̂ ;C(P)), so in particular the roots of f . This
concludes the proof.

For the applicability of Theorem 13.7 in a verification method, note that
the quality of the bound depends directly on the lower bound on |g(Y)|,
which means by (13.24) on the lower bound of ck = 1

k!f
(k)(x̂) ∈ 1

k!f
(k)(X).

The direct computation of an inclusion of 1
k!f

(k)(X) by interval arithmetic
can be improved using the centred form

ck ∈
1
k!
f (k)(x̃) +

1
(k + 1)!

f (k+1)(X) · (X− x̃) (13.39)

for x̃ ∈ X. A suitable choice is some x̃ near the midpoint of X.
The problem remains to find a suitable inclusion interval Y . Note that the

inclusion interval is necessarily complex: if the assumptions of Theorem 13.7
are satisfied for some function f , they are by continuity satisfied for a suit-
ably small perturbation of f as well. But an arbitrary small perturbation
of f may move a double real root into two complex roots. This is another
example of the Solvability principle of verification methods (1.2).

Since x̂ ∈ X is necessary by assumption, a starting interval may be Y0 :=
X. However, the sensitivity of a k-fold root is ε1/k for an ε-perturbation of
the coefficients (see below). But the quality of the inclusion X of the simple
root of f (k−1) can be expected to be nearly machine precision.

The polynomial in (13.33), PY, say, depends on Y. The main condition
to check is (13.34). Thus a suitable candidate for a first inclusion interval
is Y1 := D(x̂ ;C(PY0)). This already defines an iteration scheme, where
Ym+1 ⊂ int(Ym) verifies the conditions of Theorem 13.7. Equipped with
an epsilon-inflation as in (10.13), this is a suitable verification method for
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Table 13.4. Inclusions of k roots of the original function gk

by verifynlss2 near x̃ = 0.82 and sensitivity of the root.

k Re(X) rad(X) Sensitivity

1 0.81990735694295
3 6.32 · 10−15 2.14 · 10−16

2 0.8199077
0 2.68 · 10−7 2.53 · 10−8

3 0.819995
820 8.71 · 10−5 1.25 · 10−5

4 0.822
18 1.54 · 10−3 2.95 · 10−4

5 failed 1.96 · 10−3

the inclusion of k roots of a univariate nonlinear function. It is implemented
in verifynlss2 in INTLAB.

For computational results we use the same function as in the previous
section, namely gk := g(x)k for our model function g in (8.6). Again the
expanded function as in Table 13.2 is used. The results are displayed in
Table 13.4.

Note that by construction, and according to the Solvability principle
(1.2), the inclusion is a complex disc. In all examples in Table 13.4 the
inclusion was the smallest disc including Re(X), i.e., the imaginary part of
the midpoint was zero.

Although the inclusions in Table 13.4 may appear wide, we show that
they are, when computing in double precision, almost best possible. Let
analytic f be given with k-fold root ẑ. For given ε define f̃(z) := f(z)− ε.
By continuity, for sufficiently small ε there exists small h with f̃(ẑ+h) = 0,
so that

0 = −ε+ ckh
k +O(hk+1), (13.40)

using the Taylor expansion f(ẑ+h) =
∑
cνf

(ν)(ẑ)hν . Thus h, the sensitivity
of the k-fold root ẑ, is of the order (ε/ck)1/k for small ε.

Let a function f be given by an arithmetic expression, such as g5 in
Table 13.2. As a course analysis, f(x̃) is evaluated as a floating-point sum
fl(t1 + · · · + tm) of some tµ ∈ F, where tµ := fl(Tµ(x̃)) is the result of the
floating-point evaluation of (possibly large) terms Tµ(x̃).

Due to rounding errors, the accuracy of fl(t1 + · · · + tm) is at best ε :=
u ·maxµ |tµ| for the relative rounding error unit u = 2−53, ignoring possible
sources of errors in the evaluation of the summands Tµ(x̃).

Thus the inevitable presence of rounding errors creates the sensitivity
h = (u · maxµ |tµ|/ck)1/k of a k-fold root. This sensitivity is shown in
Table 13.4, and it is not far from the radius of the inclusion. The analysis is
confirmed by the floating-point evaluation of g5 over [0.816, 0.824], as shown
in Figure 13.1.
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Figure 13.1. Floating-point evaluation of g5 as in
Table 13.2 on 200 equidistant mesh points in [0.816,0.824].

13.4. Simple and multiple eigenvalues

The methods discussed so far can be applied to a variety of particular prob-
lems. For example, Theorem 13.3 and Algorithm 13.4 imply a verification
algorithm for simple roots of polynomials. For simple roots this is efficient
where, of course, the derivative can be computed directly.

For multiple roots of polynomials, Neumaier (2003) and Rump (2003a)
present a number of specific methods taking advantage of the special struc-
ture of the problem.

An eigenvector/eigenvalue pair (x, λ) can be written as a solution of
the nonlinear system Ax − λx = 0 together with some normalization: see
Krawczyk (1969b). Again, multiple eigenvalues can be treated by the gen-
eral approach as in the last section, but it is superior to take advantage of
the structure of the problem. The approach in Rump (2001b) for non-self-
adjoint matrices, to be described in the following, is a further example of
how to develop verification methods. We mention that the methods apply
mutatis mutandis to the generalized eigenvalue problem Ax = λBx.

Another example of the Solvability principle (1.2) is the following.
Suppose Λ ∈ IR and X ∈ IR

k have been calculated by a verification algo-
rithm such that Λ contains k not necessarily distinct eigenvalues λ1, . . . , λk

of a matrix A ∈ R
n×n, and the columns of X contain an inclusion of basis

vectors of the corresponding invariant subspace. Then Rump and Zemke
(2004) show under plausible assumptions that all eigenvalues λν must have
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Figure 13.2. Partition of the identity matrix.

geometric multiplicity 1, i.e., have, up to normalization, a unique eigenvec-
tor. This is even true for symmetric A. The reason is that for an eigenvalue
λ of A of geometric multiplicity m > 1, for any eigenvector x in the m-
dimensional eigenspace there exists an arbitrarily small perturbation Ã of
A such that λ is a simple eigenvalue of Ã and x is (up to normalization) the
unique eigenvector.

For A ∈ K
n×n, K ∈ {R,C}, let X̃ ∈ K

n×k be an approximation to a
k-dimensional invariant subspace corresponding to a multiple or a cluster
of eigenvalues near some λ̃ ∈ K, such that AX̃ ≈ λ̃X̃. As always, there are
no a priori assumptions on the quality of the approximations X̃ and λ̃.

The degree of arbitrariness is removed by freezing k rows of the approx-
imation X̃. If the set of these rows is denoted by v, and by definition
u := {1, . . . , n}\v, then denote by U ∈ R

n×(n−k) the submatrix of the
identity matrix with columns in u. Correspondingly, define V ∈ R

n×k to
comprise of the columns in v out of the identity matrix. Denoting the n×n
identity matrix by In, we have UUT + V V T = In, and V T X̃ ∈ K

k×k is
the normalizing part of X̃. Note that UTU = In−k and V TV = Ik. For
example, for u = {1, . . . , n − k}, v = {n − k + 1, . . . , n} the situation is as
in Figure 13.2.

For given X̃ ∈ K
n×k and λ̃ ∈ K, suppose

AY = YM for Y ∈ K
n×k, M ∈ K

k×k, (13.41)

such that Y and X̃ coincide in the normalizing part of X̃ : V TY = V T X̃.
The unknown quantities UTY and M are collected into X̂ ∈ K

n×k. In other
words, X̂ will be computed with UT X̂ = UTY and V T X̂ = M . Note thatM
is not assumed to be diagonal. For u = {1, . . . , n−k}, v = {n−k+1, . . . , n}
the situation is as in Figure 13.3. This implies the eigen-equation

A(UUT X̂ + V V T X̃) = (UUT X̂ + V V T X̃)V T X̂, (13.42)

such that, according to (13.41), Y = UUT X̂ + V V T X̃ and M = V T X̂.
It can be shown that the following algorithm, Algorithm 13.8, converges
quadratically under reasonable conditions.
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AU AV ·
UTY

V TY

=

( UTX̂

0

+
0

V TX̃

)
· M

A Y UUT X̂ V V T X̂︸ ︷︷ ︸
Y

Figure 13.3. Nonlinear system for multiple or clusters of eigenvalues.

Algorithm 13.8. Newton-like iteration for eigenvalue clusters:

X0 := UUT X̃ + λ̃V
for ν = 0, 1, . . .

λν := trace(V TXν)/k
Cν := (A− λνIn)UUT − (UUTXν + V V T X̃)V T

Xν+1 := UUTXν + λνV − C−1
ν · (A− λνIn)(UUTXν + V V T X̃)

Note that the scalar λν is an approximation to the cluster, and is adjusted
in every iteration to be the mean value of the eigenvalues of V TXν . This
iteration is the basis for the following verification method.

Theorem 13.9. Let A ∈ K
n×n, X̃ ∈ K

n×k, λ̃ ∈ K, R ∈ K
n×n and X ∈

K
n×k be given, and let U, V partition the identity matrix as defined in

Figure 13.2. Define

f(X) := −R(AX̃ − λ̃X̃) + {I −R
(
(A− λ̃I)UUT − (X̃ +UUT ·X)V T

)
} ·X.

(13.43)
Suppose

f(X) ⊆ int(X). (13.44)

Then there exists M̂ ∈ K
k×k with M̂ ∈ λ̃Ik + V TX such that the Jordan

canonical form of M̂ is identical to a k×k principal submatrix of the Jordan
canonical form of A, and there exists Ŷ ∈ K

n×k with Ŷ ∈ X̃ + UUTX
such that Ŷ spans the corresponding invariant subspace of A. We have
AŶ = Ŷ M̂.

Proof. The continuous mapping f : K
n → K

n defined by (13.43) maps by
(13.44) the non-empty, convex and compact set X into itself. Therefore,
Brouwer’s Fixed-Point Theorem implies existence of a fixed point X̂ ∈ K

n

with f(X̂) = X̂ and X̂ ∈ X. Inserting in (13.43) yields

−R{(AX̃ − λ̃X̃) + (A− λ̃I)UUT X̂ − (X̃ + UUT X̂)V T X̂} = 0. (13.45)
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Furthermore, (13.43), (13.44) and Lemma 10.5 imply R and every matrix
within B := (A− λ̃I)UUT − (X̃+UUT ·X)V T ∈ IK

n×n to be non-singular.
Collecting terms in (13.45) yields

A(X̃ + UUT X̂) = (X̃ + UUT X̂)(λ̃Ik + V T X̂)

or

AỸ = Ŷ M̂ for Ŷ := X̃ + UUT X̂ and M̂ := λ̃Ik + V T X̂.

Finally, (A − λ̃I)UUT − (X̃ + UUT X̂)V T ∈ B is non-singular and has k
columns equal to −Ŷ . Therefore, Ŷ has full rank and is a basis for an
invariant subspace of A. For M̂ = ZJZ−1 denoting the Jordan canonical
form, AŶ = Ŷ M̂ implies A(Ŷ Z) = (Ŷ Z)J . The theorem is proved.

Note that Theorem 13.9 is applicable for k = 1, . . . , n. For k = 1 we have
the usual eigenvalue/eigenvector inclusion, basically corresponding to the
application of Theorem 13.3 to Ax−λx = 0, freezing some component of x.
For k = n the maximum spectral radius of λ̃I +X, X ∈ X is an inclusion
of all eigenvalues.

For a practical implementation, X̃ and λ̃ are such that AX̃ ≈ λ̃X̃, and
the matrix R serves as a preconditioner, with (13.43) indicating the obvious
choice

R ≈
(
(A− λ̃I)UUT − X̃V T

)−1
.

As before, Theorem 13.9 computes an inclusion X for the error with respect
to λ̃ and X̃. For an interval iteration with epsilon-inflation as in (10.13), an
initial choice for X is a small superset of the correction term −R(AX̃−λ̃X̃).

It remains to compute an inclusion of the eigenvalue cluster, that is, an
inclusion of the eigenvalues of M̂ . Using Gershgorin circles of λ̃Ik + V TX
would yield quite pessimistic bounds for defective eigenvalues.

For an interval matrix C ∈ K
k×k, denote by |C| ∈ R

k×k the matrix of
the entrywise maximum modulus of C. Therefore, |Cij | ≤ (|C|)ij for every
C ∈ C. Then,

for r := �(|V TX|) there are k eigenvalues of A

in Ur(λ̃) := {z ∈ C : |z − λ̃| ≤ r},
(13.46)

where � denotes the spectral radius, in this case the Perron root of |V TX| ∈
R

k×k, which can be estimated as in (10.61). As a matter of principle, the
inclusion is complex.

To see (13.46), observe that for M̂ = λ̃Ik + M̃ , for some M̃ ∈ V TX, the
eigenvalues of M̂ are the eigenvalues of M̃ shifted by λ̃, and for any eigen-
value of µ of M̃ , Perron–Frobenius theory implies |µ| ≤ �(M̃) ≤ �(|M̃ |) ≤
�(|V TX|) = r. Using (13.46) is especially advantageous for defective eigen-
values.
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The matrix V TX basically contains error terms except for large off-
diagonal quantities characterizing the Jordan blocks. If the error terms are
of size ε and off-diagonal elements of size 1, the spectral radius of |V TX| is
of size ε1/m, where m is the size of the largest Jordan block. Therefore, the
radius of the inclusion is of size ε1/m, which corresponds to the sensitivity
of defective eigenvalues given by Wilkinson (1965, p. 81).

In turn, this implies that if the distance of an m-fold defective eigenvalue
to the rest of the spectrum is of the order ε1/m, then ‘numerically’ the cluster
comprises at least m+1 eigenvalues, and for k = m no inclusion is possible.

For the same reason the quality of a numerical algorithm to approxi-
mate an eigenvalue corresponding to a k× k Jordan block will be no better
than ε1/k. We demonstrate this with the following example.

Algorithm 13.10. Computing approximations and inclusions of eigen-
values of A:

n = 8; C = triu(tril(ones(n),1));
H = hadamard(n); A = H’*C*H/8,
[V,D] = eig(A);
e = diag(D), close, plot(real(e),imag(e),’*’)
[L,X] = verifyeig(A,mean(e),V)

The matrix C is unit upper triangular with ones on the first upper diago-
nal, i.e., one Jordan block to λ = 1. MATLAB seems to check for triangular
matrices because eig(C) produces a vector of ones.

The 8×8 Hadamard matrix has integer entries, and 8−1HTH = I, also in
floating-point arithmetic for 8 = 23. Hence A has the same Jordan structure
as C, i.e., one 8× 8 Jordan block to the 8-fold eigenvalue 1.

The computed eigenvalues (in the diagonal of D) are shown as asterisks
in Figure 13.4. Basically, they are on a circle around 1 with radius 0.1.
MATLAB produces those values without error message.

The final statement in Algorithm 13.10 computes the inclusion C := {z ∈
C : |z − 1.0002| ≤ 0.0355} based on the mean of the eigenvalue approxi-
mations and the approximation V of the corresponding invariant subspace.
Note that V is numerically singular because there is only one eigenvector to
the 8-fold eigenvalue 1.

Since ε1/8 = 0.0101, the quality of C corresponds to the sensitivity of
the 8-fold eigenvalue. Note that the floating-point approximations of the
eigenvalue, which may be regarded as of poor quality, represent, in fact, a
backward stable result: there is a small perturbation of the input matrix
with true eigenvalues near the computed approximations.

It is proved that C contains 8 eigenvalues of A, and the analysis shows
that there is not much room for improvement. We note that for n = 16 the
same approach fails; no inclusion is computed.
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Figure 13.4. The computed eigenvalue
approximations for A as in Algorithm 13.10.

Applying Theorem 13.9 to an interval matrix A ∈ K
n×n yields an inclu-

sion of eigenvalues and eigenvectors of all A ∈ A. In this case, as for general
nonlinear equations, inner inclusions may be computed as well. Again this
corresponds to bounds for the sensitivity with respect to finite perturbations
of A.

Moreover, outer and inner inclusions for input matrices out of some struc-
ture may be computed as well. This corresponds to structured finite per-
turbations and generalizes the structured condition numbers for eigenvalues
and pseudospectra discussed in Rump (2006).

14. Optimization

As mentioned in the abstract, Sahinidis and Tawaralani (2005) received
the 2006 Beale–Orchard–Hays Prize for their global optimization package
BARON, which ‘incorporates techniques from automatic differentiation, in-
terval arithmetic, and other areas to yield an automatic, modular, and rela-
tively efficient solver for the very difficult area of global optimization’ (from
the laudatio).

In optimization some important tasks are treated successfully by interval
methods which could hardly be solved in any other way. In particular, non-
linear terms in constraint propagation for branch and bound methods, the
estimation of the range of a function, and verification of the non-existence
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of roots within a domain (see Section 13.1) are reserved to interval methods
or related techniques from convex analysis.

Neumaier (2004), in his Acta Numerica article, gave a detailed overview
on global optimization and constraint satisfaction methods. In view of the
thorough treatment there, showing the essential role of interval methods in
this area, we restrict our discussion to more recent, complementary issues.

14.1. Linear and convex programming

One might be inclined to presume that convex optimization problems are
less affected by numerical problems. However, the NETLIB (2009) suite
of linear optimization problems contains practical examples from various
areas, and a study by Ordóñez and Freund (2003) revealed that 72% of
these real-life problems are ill-conditioned; they show that many commercial
solvers fail.

For mixed integer linear programming problems, preprocessing in partic-
ular may change the status of the linear program from feasible to infeasible,
and vice versa. Jansson (2004b) and Neumaier and Shcherbina (2004) give
methods describing how safe bounds for the solution of linear and mixed
integer linear programming problems can be obtained with minimal ad-
ditional computational effort (also, a simple example is given for which
many commercial solvers fail). A generalization of their method will be
described below.

In my experience, although straightforward, it is not easy to program a
robust simplex algorithm. Even for small problems it is not unlikely that
an incorrect branch will lead to a sub-optimal result or apparent infeasibility.

Much more demanding is the situation when applying local programming
solvers. Tawaralani and Sahinidis (2004) pointed out that nonlinear pro-
gramming solvers often fail even in solving convex problems. Due to this
lack of reliability, as one consequence, they used in their global optimization
package BARON only linear instead of nonlinear convex relaxations.

For linear programming, efficient verification methods have been imple-
mented in LURUPA by Keil (2006). This is a C++ package based on
PROFIL/BIAS by Knüppel (1994, 1998). It includes a routine for comput-
ing rigorous bounds for the condition number. Numerical results for the
NETLIB (2009) lp-library, a collection of difficult-to-solve applications, can
be found in Keil and Jansson (2006).

For convex optimization problems, too, some postprocessing of computed
data allows one to compute rigorous bounds for the result with little addi-
tional effort.

14.2. Semidefinite programming

For this review article we restrict the exposition to semidefinite program-
ming problems (SDP), and briefly sketch some promising results in this
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direction, following Jansson, Chaykin and Keil (2007). This class is rather
extensive, since many nonlinear convex problems can be reformulated within
this framework. For a general introduction to semidefinite programming,
see Todd (2001).

Consider the (primal) semidefinite program in block diagonal form,

p∗ := min
n∑

j=1

〈Cj , Xj〉 such that
n∑

j=1

〈Aij , Xj〉 = bi for i = 1, . . . ,m,

Xj � 0 for j = 1, . . . , n, (14.1)

where Cj , Aij , and Xj are symmetric sj × sj matrices, b ∈ R
m, and

〈C,X〉 = trace(CTX) (14.2)

denotes the inner product for the set of symmetric matrices. Moreover, � is
the Löwner partial ordering, that is, X � Y if and only if X −Y is positive
semidefinite.

Semidefinite programming problems generalize linear programming prob-
lems as by sj = 1 for j = 1, . . . , n, in which case Cj , Aij and Xj are
real numbers. On the other hand, linear and semidefinite programming
are special cases of conic programming. This is a universal form of con-
vex programming, and refers to non-smooth problems with linear objective
function, linear constraints, and variables that are restricted to a cone.

The Lagrangian dual of (14.1) is

d∗ := max bT y such that
m∑

i=1

yiAij  Cj for j = 1, . . . , n, (14.3)

where y ∈ R
m, so that the constraints

∑m
i=1 yiAij  Cj are linear ma-

trix inequalities (LMI). We use the convention that p∗ = −∞ if (14.1) is
unbounded and p∗ =∞ if (14.1) is infeasible, analogously for (14.3).

It is known (Vandenberghe and Boyd 1996, Ben-Tal and Nemirovskii 2001)
that semidefinite programs satisfy weak duality d∗ ≤ p∗, which turns into
strong duality if the so-called Slater constraint qualifications are satisfied.

Theorem 14.1. (Strong Duality Theorem)

(a) If the primal problem (14.1) is strictly feasible (i.e., there exist feasible
positive definite matrices Xj for j = 1, . . . , n) and p∗ is finite, then
p∗ = d∗ and the dual supremum is attained.

(b) If the dual problem (14.3) is strictly feasible (i.e., there exists some
y ∈ R

m such that Cj−
∑m

i=1 yiAij are positive definite for j = 1, . . . , n)
and d∗ is finite, then p∗ = d∗, and the primal infimum is attained.

In general, one of the problems (14.1) and (14.3) may have optimal so-
lutions while its dual is infeasible, or the duality gap may be positive at
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optimality. This is in contrast to linear programming, where strong duality
is fulfilled without any assumptions.

As has been pointed out by Neumaier and Shcherbina (2004), ill-condi-
tioning is, for example, likely to take place in combinatorial optimization
when branch-and-cut procedures sequentially generate linear or semidefinite
programming relaxations. Rigorous results in combinatorial optimization
can be obtained when solving the relaxations rigorously.

The following results generalize methods for linear programming by Jans-
son (2004b) and Neumaier and Shcherbina (2004). For convex programming
problems that cannot be reformulated as semidefinite or conic problems, see
Jansson (2004a). These techniques can also be generalized for computing
rigorous error bounds for infinite-dimensional non-smooth conic optimiza-
tion problems within the framework of functional analysis: see Jansson
(2009).

The main goal is to obtain rigorous bounds by postprocessing already
computed data.

Theorem 14.2. Let a semidefinite program (14.1) be given, let ỹ ∈ R
m,

set

Dj := Cj −
m∑

i=1

ỹiAij for j = 1, . . . , n, (14.4)

and suppose that
dj ≤ λmin(Dj) for j = 1, . . . , n. (14.5)

Assume further that a primal feasible solution Xj of (14.1) is known, to-
gether with upper bounds

λmax(Xj) ≤ xj for j = 1, . . . , n (14.6)

for the maximal eigenvalues, where xj may be infinite. If

dj ≥ 0 for those j with xj = +∞, (14.7)

then, abbreviating d−j := min(0, dj),

p∗ ≥ inf
{
bT ỹ +

n∑
j=1

sj · d−j · xj

}
(14.8)

is satisfied, and the right-hand side of (14.8) is finite. Moreover, for every j
with dj ≥ 0,

m∑
i=1

ỹiAij − Cj  0.

Proof. Let E, Y ∈ R
k×k be symmetric matrices with

d ≤ λmin(E), 0 ≤ λmin(Y ), and λmax(Y ) ≤ x. (14.9)
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For the eigenvalue decomposition E = QΛQT , it follows that

〈E, Y 〉 = trace(QΛQTY ) = trace(ΛQTY Q) =
k∑

ν=1

λν(E)eTν Q
TY Qeν .

Then (14.9) implies 0 ≤ eTν Q
TY Qeν ≤ x and thus, using d− := min(0, d),

〈E, Y 〉 ≥ k · d− · x. (14.10)

The definitions (14.4) and (14.1) imply
n∑

j=1

〈Cj , Xj〉 − bT ỹ =
n∑

j=1

〈Dj , Xj〉,

and application of (14.10) yields
n∑

j=1

〈Dj , Xj〉 ≥
n∑

j=1

sj · d−j · xj ,

which proves inequality (14.8), and assumption (14.7) ensures a finite right-
hand side. The last statement is an immediate consequence of λmin(Dj) ≥
dj ≥ 0.

Note that Theorem 14.2 includes the case when no information on primal
feasible solutions is available. In this case xj = +∞ for all j.

The application of Theorem 14.2 is as follows. The lower bounds for the
smallest eigenvalues as in (14.5) are calculated by the methods explained
in Section 10.8.1. If (14.7) is satisfied, only (14.8) has to be evaluated.
Otherwise, the constraints j violating (14.7) are relaxed by replacing Cj by
Cj − εjI. Then the dual optimal solution y(ε) satisfies the constraints

Cj −
m∑

i=1

yi(ε) Aij � εjI,

increasing the minimal eigenvalues of the new defect

Dj(ε) := Cj −
m∑

i=1

yi(ε)Aij .

Some heuristic is applied to choose εj : see Jansson et al. (2007).
Algorithms for computing rigorous lower and upper bounds bounds for

the optimal value, existence of optimal solutions and rigorous bounds for
ε-optimal solutions as well as verified certificates of primal and dual infea-
sibility have been implemented in VSDP by Jansson (2006), a MATLAB
toolbox for verified semidefinite programming solving based on INTLAB.

Numerical results for problems from the SDPLIB collection by Borchers
(1999), a collection of large and real-life test problems, were reported by
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Jansson (2009). The verification method in VSDP could compute for all
problems a rigorous lower bound of the optimal value, and could verify the
existence of strictly dual feasible solutions proving that all problems have
a zero duality gap. A finite rigorous upper bound could be computed for
all well-posed problems, with one exception (Problem hinf2). For all 32
ill-posed problems in the SDPLIB collection, VSDP computed the upper
bound fd = +∞ indicating the zero distance to primal infeasibility.

The package SDPT3 by Tütüncü, Toh and Todd (2003) (with default
values), for example, gave warnings for 7 problems, where 2 warnings were
given for well-posed problems. Hence, no warnings were given for 27 ill-
posed problems with zero distance to primal infeasibility.



398 S. M. Rump

PART THREE

Infinite-dimensional problems

15. Ordinary differential equations

In the following we briefly summarize current verification methods for ini-
tial value problems; two-point boundary value problems will be discussed
in the next section in more detail, because the generalization from finite-
dimensional problems (Section 13) to the infinite-dimensional case is very
natural.

Most approaches proceed iteratively, computing an inclusion yν+1 based
on an inclusion yν . This verification is performed in two steps: an initial
inclusion ỹν+1 followed by a refinement step. Because of the inevitable
presence of rounding errors, the first inclusion y1 will have non-zero width,
so that, at each step, an initial value problem has to be integrated over a
set of initial values.

This leads to a fundamental problem, the wrapping effect already dis-
cussed in Section 9.2, similar to the widening of intervals in interval Gaus-
sian elimination (see Section 10.1). To combat this, Moore (1966) pro-
posed a moving coordinate system to reduce the local error. Eijgenraam
(1981) proposed using higher-order approximations and inclusions. Instead
of directly multiplying the transformation matrices, Lohner (1988) applies a
QR-decomposition, an important advantage for long-term integration. His
package AWA (Anfangswertaufgaben)24 is well known.

Most verification methods for ODEs follow this two-step approach (see
Nedialkov and Jackson (2000)), and much research has been done on im-
proving the next initial inclusion (the first step), and improving the refine-
ment. For the latter step, common techniques are Taylor series methods,
as in AWA, constraint satisfaction methods, which are also used in global
optimization (Schichl and Neumaier 2005), and the Hermite–Obreschkoff
method by Nedialkov (1999). The latter is the basis for the software pack-
age VNODE. Note that these approaches contradict the Utilize input
data principle (5.13).

Finally we mention the one-phase method Cosy Infinity by Berz and
Makino (1999), where the solution is directly modelled by an automatic
Taylor expansion (see Section 11.4). Their code is not freely available.

However, we also mention the very detailed but also discouraging study by
Bernelli azzera, Vasile, Massari and Di Lizia (2004) on the solution of space-
related problems. The result is basically that long-term integration is an
open problem. This was also formulated as a challenge in Neumaier (2002).

24 Initial value problems.
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15.1. Two-point boundary value problems

The ideas presented in the previous sections on finite-dimensional problems
can be used to derive verification methods for infinite-dimensional problems
by extending the tools used so far to Banach and Hilbert spaces.

In this section we briefly sketch a verification method for an ODE, whereas
in the final section semilinear elliptic PDEs are considered in much more
detail. Once more it demonstrates the principle of verification methods:
to derive mathematical theorems, the assumptions of which can be verified
with the aid of a computer. The result is a computer-assisted proof.

In particular, we are here concerned with a two-point boundary value
problem of the form

−u′′ = ruN + f, 0 < x < 1,

u(0) = u(1) = 0,
(15.1)

for N ∈ N, r ∈ L∞(0, 1) and f ∈ L2(0, 1). We assume N ≥ 2; the following
is based on Nakao, Hashimoto and Watanabe (2005) and Takayasu, Oishi
and Kubo (2009a) (the simpler linear case N = 1 is handled in Takayasu,
Oishi and Kubo (2009b); see below).

The verification method transforms the problem into a nonlinear operator
equation with a solution operator K to the Poisson equation

−u′′ = f, 0 < x < 1,

u(0) = u(1) = 0.
(15.2)

Let (·, ·) denote the inner product in L2(0, 1), and let Hm(0, 1) denote the
L2-Sobolev space of order m. For

H1
0 (0, 1) = {u ∈ H1(0, 1) : u(0) = u(1) = 0 in the sense of traces}

with the inner product (u′, v′) and norm ‖u‖H1
0

= ‖u′‖L2 , the solution oper-
ator K will be regarded as a bounded linear operator from L2 into H2∩H1

0 .
Since the embedding H2 ↪→ H1 is compact, K is also a compact linear

operator from H1
0 to H1

0 .
Recall that the eigenvalue problem

−u′′ = λu, 0 < x < 1,

u(0) = u(1) = 0,
(15.3)

has eigenvalues λk = k2π2, so the minimal eigenvalue is λmin = π2. The
usual Rayleigh quotient estimate for u ∈ H2 ∩H1

0 of (15.3) implies

λmin(u, u) ≤ (u′, u′) = (−u′′, u) ≤ ‖u′′‖L2‖u‖L2 ,
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hence

‖u‖L2 ≤ 1
π
‖u′‖L2 =

1
π
‖u‖H1

0
and ‖u‖H1

0
≤ 1
π
‖u′′‖L2 , (15.4)

which means in particular

‖K‖L(L2,H1
0 ) ≤

1
π
. (15.5)

Note that ‖u‖L2 ≤ 1
π‖u‖H1

0
holds for all u ∈ H1

0 since H2 ∩H1
0 is dense in

H1
0 (and the embedding H1 ↪→ L2 is compact).
Recall that, for every u ∈ H1

0 ,

|u(x)| =
∣∣∣∣
∫ x

0
u′ dt

∣∣∣∣ ≤
∫ x

0
|u′|dt and |u(x)| =

∣∣∣∣
∫ x

1
u′ dt

∣∣∣∣ ≤
∫ 1

x
|u′|dt,

which implies

2|u(x)| ≤
∫ 1

0
|u′|dt ≤ ‖u′‖L2 = ‖u‖H1

0
,

and thus

‖u‖∞ ≤ 1
2
‖u‖H1

0
. (15.6)

For numerical approximations we will use piecewise cubic finite element
basis functions. For this purpose consider the cubic polynomials

N0(x) = (1− x)2(1 + 2x),

N1(x) = x(1− x)2,

N2(x) = x2(3− 2x),

N3(x) = −x2(1− x),

which form a basis of the vector space P3 of all real polynomials of degree
≤ 3. Note that for p ∈ P3 the corresponding dual basis N∗

i ∈ P ∗
3 , 0 ≤ i ≤ 3,

is given by

N∗
0 (p) := p(0),

N∗
1 (p) := p′(0),

N∗
2 (p) := p(1),

N∗
3 (p) := p′(1),

so that p = p(0)N0 + p′(0)N1 + p(1)N2 + p′(1)N3.
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Now let n ∈ N, h := 1/(n + 1) and xi := ih, −1 ≤ i ≤ n + 2. Then
x0, . . . , xn+1 is an equidistant partition of the interval [0, 1]. The functions

ψi,0(x) =



N2(

x−xi−1

h ), x ∈ [xi−1, xi] ∩ [0, 1],

N0(x−xi
h ), x ∈ ]xi, xi+1] ∩ [0, 1],

0, otherwise,

0 ≤ i ≤ n+ 1,

ψi,1(x) =



hN3(

x−xi−1

h ), x ∈ [xi−1, xi] ∩ [0, 1],

hN1(x−xi
h ), x ∈ ]xi, xi+1] ∩ [0, 1],

0, otherwise,

0 ≤ i ≤ n+ 1,

are 2(n+ 2) linearly independent H2-conforming finite element basis func-
tions. We choose the ordering

(ψ0,0, ψ0,1, ψ1,0, ψ1,1, . . . , ψn,0, ψn,1, ψn+1,1, ψn+1,0) =: (φ0, . . . , φm+1),

where m := 2(n+1), and denote the spanned (m+2)-dimensional space by

Xn := span{φ0, . . . , φm+1} ⊂ H2. (15.7)

The subspace spanned by the H1
0 -conforming finite element basis functions

(φ1, . . . , φm) is denoted by

Xn := span{φ1, . . . , φm} ⊂ H2 ∩H1
0 . (15.8)

Note that the coefficients v0, . . . , vm+1 of a function

v =
m+1∑
i=0

viφi ∈ Xn

can be easily computed by v2i = v(xi), v2i+1 = v′(xi), i = 0, . . . , n, and
vm = v′(1), vm+1 = v(1). The orthogonal projection Pn : H1

0 → Xn is
defined by

(u′ − (Pnu)′, φ′) = 0 for all u ∈ H1
0 and all φ ∈ Xn, (15.9)

and the dual projection Qn : H2 → Xn is defined by

Qn(u) :=
n∑

i=0

(u(xi)φ2i + u′(xi)φ2i+1) + u′(1)φm + u(1)φm+1, (15.10)

where in (15.10), as usual, u ∈ H2 is regarded as a member of C1([0, 1]) in
which H2 is compactly embedded. We recall basic estimates of the finite
element projection errors. Even though well known in general, these esti-
mates often do not occur explicitly for the one-dimensional case in standard
textbooks. Thus, for completeness, the proofs are included.
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Theorem 15.1. (FEM-projection error bounds) For u ∈ H2 the fol-
lowing inequalities hold:

(a) ‖u− Pnu‖H1
0
≤ ‖u−Qnu‖H1

0
if u ∈ H2 ∩H1

0 ,

(b) ‖u−Qnu‖L2 ≤ h
π‖u−Qnu‖H1

0
,

(c) ‖u−Qnu‖H1
0
≤ h

π‖(u−Qnu)′′‖L2 ≤ h
π‖u′′‖L2 ,

(d) ‖u−Qnu‖H1
0
≤ h2

π2 ‖u′′′‖L2 if u ∈ H3 ∩H1
0 .

Proof. (a) Since u ∈ H2 ∩ H1
0 , Qnu ∈ Xn and therefore Pnu − Qnu ∈

Xn. It follows from the definition of the orthogonal projection (15.9) that
((u− Pnu)′, (Pnu−Qnu)′) = 0, which gives the Pythagorean identity

‖u−Qnu‖2H1
0

= ‖u− Pnu‖2H1
0

+ ‖Pnu−Qnu‖2H1
0
≥ ‖u− Pnu‖2H1

0
.

(b) The function e := u−Qnu fulfils e(xi) = 0 for each i ∈ {0, . . . , n+ 1}.
Hence each function e(xi + hx), i ∈ {0, . . . , n}, belongs to H1

0 . Now (15.4)
supplies∫ 1

0
e(xi + hx)2 dx = ‖e(xi + hx)‖2L2 ≤

1
π2
‖(e(xi + hx))′‖2L2

=
h

π2

∫ 1

0
he′(xi + hx)2 dx =

h

π2

∫ xi+1

xi

e′(x)2 dx.

Thus

‖e‖2L2 =
n∑

i=0

∫ xi+1

xi

e(x)2 dx = h
n∑

i=0

∫ xi+1

xi

e

(
xi + h · x− xi

h

)2 1
h

dx

= h

n∑
i=0

∫ 1

0
e(xi + hx)2 dx ≤ h2

π2

n∑
i=0

∫ xi+1

xi

e′(x)2 dx =
h2

π2
‖e‖2H1

0
.

(c) The function d := (u−Qnu)′ fulfils d(xi) = 0 for each i ∈ {0, . . . , n+1}.
Therefore d ∈ H1

0 as u,Qnu ∈ H2, and ‖d‖L2 ≤ h
π‖d′‖L2 follows by the

same computation as in (b) with d instead of e. This is the first part,

‖u−Qnu‖H1
0
≤ h

π
‖(u−Qnu)′′‖L2 ,

of the inequality in (c). Since Qnu is a piecewise cubic polynomial,

(Qnu|[xi,xi+1])
′′′′ = 0

supplies
1
2
(
−‖(u−Qnu)′′‖2L2 + ‖u′′‖2L2 − ‖(Qnu)′′‖2L2

)
(15.11)

=
∫ 1

0
(Qnu)′′(u−Qnu)′′ dx
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=
n∑

i=0

[(Qnu)′′(u−Qnu)′]
xi+1
xi − [(Qnu)′′′(u−Qnu)]

xi+1
xi

+
∫ xi+1

xi

(Qnu)′′′′(Qnu) dx = 0.

Thus
‖(u−Qnu)′′‖2L2 = ‖u′′‖2L2 − ‖(Qnu)′′‖2L2 ≤ ‖u′′‖2L2 ,

giving the second part of the asserted inequality.

(d) If u ∈ H3∩H1
0 , then using (15.11), the Cauchy–Schwarz inequality and

(c) yield

‖(u−Qnu)′′‖2L2 =
∫ 1

0
u′′(u−Qnu)′′ dx = −

∫ 1

0
u′′′(u−Qnu)′ dx

≤ ‖u′′′‖L2‖(u−Qnu)′‖L2 ≤ h

π
‖u′′′‖L2‖(u−Qnu)′′‖L2 .

Therefore

‖(u−Qnu)′′‖L2 ≤ h

π
‖u′′′‖L2 ,

which, inserted into (c), gives

‖u−Qnu‖H1
0
≤ h2

π2
‖u′′′‖L2 .

Applying the solution operator K for (15.2), the problem (15.1) is trans-
formed into u = K(ruN + f), or equivalently into the nonlinear operator
equation

F (u) := u−KruN −Kf = 0. (15.12)

Based on an approximate finite element solution û, the Newton–Kantorovich
theorem is applicable. Note that û can be computed by any standard (ap-
proximate) numerical method.

Theorem 15.2. (Newton–Kantorovich) Let F be given as in (15.12),
and assume the Fréchet derivative F ′(û) is non-singular and satisfies

‖F ′(û)−1F (û)‖H1
0
≤ α (15.13)

for some positive α. Furthermore, assume

‖F ′(û)−1(F ′(v)− F ′(w))‖L(H1
0 ,H1

0 ) ≤ ω‖v − w‖H1
0

(15.14)

for some positive ω and for all v, w ∈ U2α(û) := {z ∈ H1
0 , ‖z − û‖H1

0
< 2α}.

If

αω ≤ 1
2
, (15.15)
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then F (u) = 0 has a solution u satisfying

‖u− û‖H1
0
≤ ρ :=

1−
√

1− 2αω
ω

. (15.16)

Within this bound, the solution is unique.

Since K : H1
0 → H1

0 is a compact operator, r ∈ L∞(0, 1) and û ∈ Xn ⊂
L∞, the operator

T : H1
0 → H1

0 , v !→ KNrûN−1v (15.17)

is compact as well. The verification method is based on the computation of
constants C1, C2 and C3 with

‖F ′(û)−1‖L(H1
0 ,H1

0 ) = ‖(I − T )−1‖L(H1
0 ,H1

0 ) ≤ C1, (15.18)

‖F (û)‖H1
0

= ‖û−KrûN −Kf‖H1
0
≤ C2, (15.19)

where I denotes the identity on H1
0 , and

‖F ′(v)− F ′(w)‖L(H1
0 ,H1

0 ) ≤ C3‖v − w‖H1
0

for all v, w ∈ U2α(û). (15.20)

If (15.15) is satisfied for

α := C1C2 and ω := C1C3, (15.21)

then (15.16) follows. The main part, the estimation of C1, uses the following
result by Oishi (2000).

Theorem 15.3. Let T : H1
0 → H1

0 be a compact linear operator. Assume
that PnT is bounded by

‖PnT ‖L(H1
0 ,H1

0 ) ≤ K, (15.22)

that the difference between T and PnT is bounded by

‖T − PnT ‖L(H1
0 ,H1

0 ) ≤ L, (15.23)

and that the finite-dimensional operator (I−PnT )|Xn : Xn → Xn is invert-
ible with

‖(I − PnT )|−1
Xn
‖L(H1

0 ,H1
0 ) ≤M. (15.24)

If (1 +MK)L < 1, then the operator (I − T ) : H1
0 → H1

0 is invertible and

‖(I − T )−1‖L(H1
0 ,H1

0 ) ≤
1 +MK

1− (1 +MK)L
.

Proof. Using the finite-dimensional operator (I − PnT )|−1
Xn

: Xn → Xn,
one can show by direct computation that

(I − PnT )−1 = I + (I − PnT )|−1
Xn
PnT .
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The assumptions imply that this inverse operator is bounded by

‖(I − PnT )−1‖L(H1
0 ,H1

0 ) ≤ 1 + ‖(I − PnT )|−1
Xn
‖L(H1

0 ,H1
0 ) · ‖PnT ‖L(H1

0 ,H1
0 )

≤ 1 +MK.

Moreover, for φ ∈ H1
0 and ψ := (I − T )φ, using

φ = φ− (I − PnT )−1(I − T )φ+ (I − PnT )−1ψ,

we have

‖φ‖H1
0
≤ ‖I − (I − PnT )−1(I − T )‖L(H1

0 ,H1
0 )‖φ‖H1

0
+ ‖(I − PnT )−1ψ‖H1

0

≤ ‖(I − PnT )−1‖L(H1
0 ,H1

0 )‖T − PnT ‖L(H1
0 ,H1

0 )‖φ‖H1
0

+ (1 +MK)‖ψ‖H1
0

≤ (1 +MK)L‖φ‖H1
0

+ (1 +MK)‖ψ‖H1
0
, (15.25)

and therefore

‖φ‖H1
0
≤ 1 +MK

1− (1 +MK)L
‖(I − T )φ‖H1

0
.

This implies that (I − T ) : H1
0 → H1

0 is injective, and by the Fredholm
alternative it has a bounded inverse satisfying φ = (I−T )−1ψ. The theorem
follows.

To estimate C1 by Theorem 15.3, three constants K,L and M are needed,
which can be computed as follows. Using (15.4) and (15.5), we obtain for
u ∈ H1

0

‖PnT u‖H1
0
≤ ‖T u‖H1

0
≤ 1
π
N‖rûN−1‖∞‖u‖L2 ≤ 1

π2
N‖rûN−1‖∞‖u‖H1

0
,

which implies that (15.22) holds for

K :=
1
π2
N‖rûN−1‖∞. (15.26)

Furthermore, applying the error bound

‖(I − Pn)v‖H1
0
≤ h

π
‖v′′‖L2

for v ∈ H2 ∩H1
0 (see Theorem 15.1(a), (c)), we obtain, using (15.4),

‖(T − PnT )u‖H1
0
≤ h

π
‖(T u)′′‖L2 =

h

π
N‖rûN−1u‖L2≤ h

π2
N‖rûN−1‖∞‖u‖H1

0
.

Hence (15.23) holds for

L :=
h

π2
N‖rûN−1‖∞ = hK. (15.27)
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If r ∈ W 1,∞, the L∞-Sobolev space of order 1, then T u ∈ H3 ∩H1
0 , and

using Theorem 15.1(a), (d) gives

‖(T − PnT )u‖H1
0

≤ h2

π2
‖(T u)′′′‖L2 =

h2

π2
N‖(rûN−1u)′‖L2

≤ h2

π2
N

(
1
π
‖r′ûN−1 + (N − 1)rûN−2û′‖∞ + ‖rûN−1‖∞

)
‖u‖H1

0
,

and (15.23) holds for the O(h2) bound

L :=
h2

π2
N

(
1
π
‖r′ûN−1 + (N − 1)rûN−2û′‖∞ + ‖rûN−1‖∞

)
. (15.28)

Condition (15.24) requires us to calculate a constant M satisfying∥∥∥∥(I − PnT )|−1
Xn

( m∑
i=1

viφi

)∥∥∥∥
H1

0

≤M

∥∥∥∥ m∑
i=1

viφi

∥∥∥∥
H1

0

for all v1, . . . , vm ∈ R,

and thus
m∑

i,j=1

vivj

∫ 1

0
ψ′

iψ
′
j dx ≤M2

m∑
i,j=1

vivj

∫ 1

0
φ′iφ

′
j dx, (15.29)

where

ψi =
m∑

j=1

αijφj := (I − PnT )|−1
Xn
φi, i .e., (I − PnT )ψi = φi.

Taking inner H1
0 -products with φk, k = 1, . . . ,m, the latter is equivalent to

m∑
j=1

αij

[
(φ′j , φ

′
k)− ((T φj)′, φ′k)

]
= (φ′i, φ

′
k). (15.30)

By partial integration,

((T φj)′, φ′k) = −((T φj)′′, φk) = N(rûN−1φj , φk).

Thus, defining A = (αij)1≤i,j≤m and

R := ((φ′j , φ
′
k)−N(rûN−1φj , φk))1≤j,k≤m,

G := ((φ′i, φ
′
k))1≤i,k≤m,

(15.31)

(15.30) reads AR = G, whence A = GR−1. Note that all integrals have
to be bounded rigorously. This can be done, for example, using the INT-
LAB algorithm verifyquad described in Section 12. Also note that the
invertibility of R, which is equivalent to the invertibility of the operator
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(I−PnT )|Xn , has to be verified. The methods described below ensure this.
Now

(ψ′
i, ψ

′
j) =

m∑
k,l=1

αikαjl(φ′k, φ
′
l) = (AGAT )ij = (GR−1GR−1G)ij .

Insertion into (15.29) gives the equivalent condition

vT (GR−1GR−1G)v ≤M2vTGv for all v ∈ R
m,

and thus (15.24) holds for

M :=
√
λmax, (15.32)

with λmax denoting the largest (in absolute value) eigenvalue of the matrix
eigenvalue problem

GR−1GR−1Gv = λGv. (15.33)

Since M is equal to the spectral radius of R−1G, an upper bound can be
computed in INTLAB, for example, as follows. First, C = verifylss(R,G)
(see Section 10.5) verifies that R is non-singular and computes an inclusion
C of R−1G, so that M ≤ ‖R−1G‖2 ≤

√
‖R−1G‖∞‖R−1G‖1 and

Mb = mag(sqrt(norm(C, inf) ∗ norm(C, 1))) implies M ≤ Mb. (15.34)

Another way to estimate M is by a (verified) similarity transformation
and Gershgorin circles as follows:

[V,D] = eig(mid(C));
Y = verifylss(V,C*V);
Mb = max(mag(gershgorin(Y)));

Again M ≤ Mb holds. Neither approach uses the symmetry of R and G.
Alternatively, note that for a complex eigenvalue/eigenvector pair (v, λ) of
(15.33) it follows that

vTGR−1GR−1Gv = λvTGv. (15.35)

But vTGv > 0 because G is positive definite, and the left-hand side of
(15.35) is real because GR−1GR−1G is symmetric, so that λ must be real
and non-zero. Moreover, λ is an eigenvalue of (R−1G)2, so λ > 0, and,
because G is positive definite, λ′G − GR−1GR−1G is positive semidefinite
if and only if λ′ ≥ λmax. The latter bounds are often significantly superior
to (15.34).

Thus, choosing λ′ a little larger than an approximation of λmax, and
verifying that λ′G − GR−1GR−1G is positive semidefinite by algorithm
isspd discussed in Section 10.8.1, proves M ≤

√
λ′. We mention that the

latter two approaches yield significantly better estimates of M than (15.34).
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With K,L,M computed according to (15.26), (15.27) (or (15.28) if r ∈
W 1,∞) and (15.32), a constant

C1 :=
1 +MK

1− (1 +MK)L
(15.36)

satisfying (15.18) is obtained via Theorem 15.3, provided (1 +MK)L < 1
(which requires h to be sufficiently small).

It follows from (15.5) that

‖û−K(rûN )−Kf‖H1
0

= ‖K(−û′′ − rûN − f)‖H1
0

≤ 1
π
‖û′′ + rûN + f‖L2 =: C2. (15.37)

The constant C2 is expected to be small if the approximation û is sufficiently
accurate.

In the following, another estimate for a defect bound ‖û − K(rûN +
f)‖H1

0
≤ C2 is given, which naturally leads to a Newton method for finding

û. For simplicity we assume from now on that r, f ∈ H2, so that the dual
projection Qn can be applied to these functions. The main idea is to re-
place ‖û−K(rûN + f)‖H1

0
by a projected finite element defect, namely by

‖û−PnKQn(rûN+f)‖H1
0
. Note that rûN ∈ H2, sinceH2 is an algebra in the

one-dimensional case. Using the triangle inequality, Theorem 15.1(a), (d)
and (15.5) imply

‖û−K(rûN + f)‖H1
0

≤ ‖û− PnKQn(rûN + f)‖H1
0

+ ‖PnKQn(rûN + f)−KQn(rûN + f)‖H1
0

+ ‖KQn(rûN + f)−K(rûN + f)‖H1
0

= ‖û− PnKQn(rûN + f)‖H1
0

+ ‖(Pn − I)KQn(rûN + f)‖H1
0

+ ‖K(Qn − I)(rûN + f)‖H1
0

≤ ‖û− PnKQn(rûN + f)‖H1
0

+
h2

π2
‖(Qn(rûN + f))′‖L2

+
1
π
‖(Qn − I)(rûN + f)‖L2 .

The three summands in the last line are abbreviated by

C ′
21 := ‖û− PnKQn(rûN + f)‖H1

0
,

C22 :=
h2

π2
‖(Qn(rûN + f))′‖L2 ,

C23 :=
1
π
‖(Qn − I)(rûN + f)‖L2 .



Verification methods 409

Furthermore, define the mass and stiffness matrices

H := ((φi, φj))1≤i≤m, 0≤j≤m+1 ∈ R
m,m+2,

G := ((φ′i, φ
′
j))0≤i,j≤m+1 ∈ R

m+2,m+2.

Recall that the symmetric positive definite matrix

G = ((φ′i, φ
′
j))1≤i,j≤m ∈ R

m,m,

defined in (15.31), is the inner submatrix of G of order m.
Let uh = (u0, . . . , um+1) ∈ R

m+2 denote the vector representation of
u ∈ Xn with respect to the basis (φ0, . . . , φm+1), and analogously let uh =
(u1, . . . , um) ∈ R

m denote the vector representation of u ∈ Xn with respect
to the basis (φ1, . . . , φm) of Xn. For v ∈ Xn and u := PnKv ∈ Xn, for each
i = 1, . . . ,m the definition of the orthogonal projection (15.9) yields

(Guh)i =
m∑

j=1

uj(φ′i, φ
′
j) = (φ′i, u

′) = (φ′i, (PnKv)′) = (φ′i, (Kv)′)

= −(φi, (Kv)′′) = (φi, v) =
m+1∑
j=0

vj(φi, φj) = (Hvh)i.

Hence uh = G−1Hvh shows that the matrix representation of PnK|Xn
:

Xn → Xn with respect to the bases (φ0, . . . , φm+1) of Xn and (φ1, . . . , φm)
of Xn is G−1H. Now define v := Qn(rûN + f). Then

C ′
21 = ‖û− PnKv‖H1

0
= [(ûh −G−1Hvh)tG(ûh −G−1Hvh)]

1
2 (15.38)

= [(Gûh −Hvh)tG−1(Gûh −Hvh)]
1
2 ≤ 1√

λmin(G)
‖Gûh −Hvh‖2,

where λmin(G) denotes the smallest eigenvalue of the symmetric positive
definite matrix G. A positive lower bound lambda ≤ λmin(G) can be esti-
mated and verified using INTLAB, for example, by the following pattern:

lambda = 0.99*min(eig(mid(G)));
I_m = eye(m);
while not(isspd(G-lambda*I_m))

lambda = 0.99*lambda;
end

Here isspd verifies that a symmetric matrix is positive definite; see Section
10.8.1. Note that the loop was never executed in our examples.

Having computed lambda successfully, define

C21 :=
1√

lambda
‖Gûh −Hvh‖2.
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Then the constant

C2 := C21 + C22 + C23 (15.39)

is an upper bound for ‖û−K(rûN + f)‖H1
0
. Besides

C22 =
h2

π2

√
vt

hGvh,

we also have that

C23 =
1
π
‖(Qn − I)(rûN + f)‖L2 ≤ h2

π3
‖(rûN + f)′′‖L2

(see Theorem 15.1(b), (c)) is of order O(h2), so that in general C2 cannot
be expected to be of higher order.

Line (15.38) suggests a Newton method for determining an approximate
solution û, which is described below. Define

g : R
m → R

m, u !→ Gu−Hvh,

where

v := Qn

(
r

( m∑
i=1

uiφi

)N

+ f

)
∈ Xn,

with vector representation vh = (v0, . . . , vm+1) ∈ R
m+2. For Qnf, Qnr ∈

Xn with vector representations

fh = (f(0), f ′(0), f(h), f ′(h), . . . , f(1− h), f ′(1− h), f ′(1), f(1))

= (f0, . . . , fm+1),

and similarly rh = (r0, . . . , rm+1), respectively, it follows, utilizing N ≥ 2,
for i ∈ {0, . . . ,m+ 1}, that

vi =



fi, if i ∈ {0, 1,m,m+ 1},
riu

N
i + fi, if i ∈ {2, . . . ,m− 2} is even,

riu
N
i−1 +Nri−1u

N−1
i−1 ui + fi, if i ∈ {3, . . . ,m− 1} is odd.

Hence the Jacobian J of g in u ∈ R
m reads, in MATLAB notation,

J = G;
for j = [2:2:m-2]

J(:,j) = J(:,j)-N*(H(:,j)*r(j)*u(j)^(N-1)...
+H(:,j+1)*(r(j+1)*u(j)^(N-1)...
+(N-1)*r(j)*u(j)^(N-2)*u(j+1)));

end
for j = [3:2:m-1]

J(:,j) = J(:,j)-N*H(:,j)*r(j-1)*u(j-1)^(N-1);
end
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and a Newton step improves an approximation u into u − du with du :=
J−1(Gu−Hvh). In practice, of course, du is calculated as an approximate
solution of the linear system with matrix J and right-hand side Gu−Hvh.

Finally, to compute a constant C3 satisfying (15.20), we use (15.5) and
(15.6) to obtain, for v, w, ϕ ∈ H1

0 ,

‖(F ′(v)− F ′(w))ϕ‖H1
0

= ‖KNr(vN−1 − wN−1)ϕ‖H1
0
≤ N

π
‖r(vN−1 − wN−1)ϕ‖L2

≤ N

π
‖r(vN−1 − wN−1)‖L2‖ϕ‖∞ ≤ N

2π
‖r(vN−1 − wN−1)‖L2‖ϕ‖H1

0
.

If
‖v − û‖H1

0
< 2α, ‖w − û‖H1

0
< 2α,

and thus
‖v − û‖∞ < α, ‖w − û‖∞ < α

by (15.6), this means, using (15.4), that

‖F ′(v)− F ′(w)‖L(H1
0 ,H1

0 )

≤ N

2π
‖r(vN−1 − wN−1)‖L2

=
N

2π
‖r(vN−2 + vN−3w + · · ·+ vwN−3 + wN−2)(v − w)‖L2

≤ N

2π
‖r‖∞(‖v‖N−2

∞ + ‖v‖N−3
∞ ‖w‖∞ + · · ·+ ‖w‖N−2

∞ )‖v − w‖L2

≤ N(N − 1)
2π2

‖r‖∞(‖û‖∞ + α)N−2‖v − w‖H1
0
,

which gives

C3 :=
N(N − 1)

2π2
‖r‖∞(‖û‖∞ + α)N−2. (15.40)

If αω = C2
1C2C3 ≤ 1

2 , then the Newton–Kantorovich theorem implies that
there exists a unique solution u ∈ Uρ(û) satisfying the two-point boundary
value problem (15.1), with ρ defined in (15.16).25

As a numerical example, consider

−u′′ = (x+ 2)3u3 − cos 2πx, 0 < x < 1,
u(0) = u(1) = 0.

(15.41)

25 Even though excluded in the beginning, the linear case N = 1 can be treated in a
similar but more direct way resulting in ‖u − û‖H1

0
≤ α = C1C2. The constant C3 is

not needed.
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Table 15.1. Guaranteed error estimates.

Number of grid points
65 129 257 513

u−1 αω 0.85 1.88 · 10−1 4.56 · 10−2 1.14 · 10−2

ρ − 2.39 · 10−3 5.41 · 10−4 1.34 · 10−4

u0 αω 4.77 · 10−5 1.18 · 10−5 2.95 · 10−6 7.37 · 10−7

ρ 1.11 · 10−4 2.79 · 10−5 6.97 · 10−6 1.74 · 10−6

u1 αω 0.59 1.34 · 10−1 3.27 · 10−2 8.19 · 10−3

ρ − 2.09 · 10−3 4.88 · 10−4 1.21 · 10−4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

−u’’=(x+2)3u3−cos(2π x), u(0)=0=u(1)

u1

u0

u−1

Figure 15.1. Verified inclusions for three distinct solutions of (15.41)
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Three approximate solutions û−1, û0, û1 are obtained by some Newton
iterates starting with û0−1 ≡ −1, û0

0 ≡ 0, û0
1 ≡ 1, respectively. The computed

bounds for αω and ρ are displayed in Table 15.1. If the number of grid
points n+ 1 is at least 129, then αω < 0.5 in all three cases. It follows that
there exist solutions u−1, u0 and u1 of (15.41) in the ball centred at ûi with
corresponding radius ρ, i.e., ‖ui − ûi‖H1

0
≤ ρ and therefore

‖ui − ûi‖∞ ≤ 1
2
ρ for i = −1, 0, 1.

Since ρ is sufficiently small, these solutions are pairwise distinct. Note that
‖u−1‖∞ ≈ 0.91, ‖u0‖∞ ≈ 0.05 and ‖u1‖∞ ≈ 0.95, so that for all three
solutions the relative error near the extremum is about 10−4.

Figure 15.1 displays the ‖ · ‖∞-inclusions for these three solutions. The
radius ρ is so small that the upper and lower bounds seem to lie on one
single line. At first glance Figure 15.1 might suggest u−1 = −u1, which is
of course not the case, on checking (15.41) for symmetries. We do not know
whether there are more solutions of (15.41) besides u1, u0, u−1.

16. Semilinear elliptic boundary value problems
(by Michael Plum, Karlsruhe)

In this final section we will describe in more detail a verification method for
semilinear elliptic boundary value problems of the form

−∆u(x) + f(x, u(x)) = 0 (x ∈ Ω), u(x) = 0 (x ∈ ∂Ω), (16.1)

with Ω ⊂ R
n denoting some given domain, and f : Ω× R → R some given

nonlinearity.
Such problems have been (and still are) extensively studied in the differ-

ential equations literature, and they have a lot of applications, for instance
in mathematical physics. Often they serve as model problems for more
complex mathematical situations.

Starting perhaps with Picard’s successive iterations at the end of the
nineteenth century,various analytical methods and techniques have been
(and are being) developed to study existence and multiplicity of solutions
to problem (16.1), among them variational methods (including mountain
pass methods), index and degree theory, monotonicity methods, fixed-point
methods, and more. However, many questions remain open, offering op-
portunities for computer-assisted proofs and verification methods to sup-
plement these purely analytical approaches.

As for finite-dimensional problems, we start with an approximate solution
ũ in some suitable function space and rewrite (16.1) as a boundary value
problem for the error v = u − ũ. This is transformed into an equivalent
fixed-point equation,

v ∈ X, v = T (v), (16.2)
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in a Banach space X, and some fixed-point theorem is applied as in Sec-
tions 13 or 15.

In the finite-dimensional case, Brouwer’s Fixed-Point Theorem was the
easiest choice. Here we use its generalization to Banach spaces, that is,
Schauder’s Fixed-Point Theorem, provided that some compactness prop-
erties are available, or Banach’s Fixed-Point Theorem if we are ready to
accept an additional contraction condition. The existence of a solution v∗
of (16.2) in some suitable set V ⊂ X then follows, provided that

T (V ) ⊂ V. (16.3)

Consequently, u∗ := ũ + v∗ is a solution of (16.1) (which gives the desired
existence result), and u∗ ∈ ũ+ V is an enclosure for u∗.

So the crucial condition to be verified, for some suitable set V , is (16.3).
In the corresponding finite-dimensional situation, for given V the left-hand
side of (16.3) was evaluated more or less in closed form, since there the
operator T : R

n → R
n was composed of computable or enclosable terms

such as the given nonlinear function, its Jacobian, and so forth.
In the infinite-dimensional situation, the operator T will in principle be

built in a similar way, with the Jacobian now replaced by the elliptic differ-
ential operator L obtained by linearization of the left-hand side of (16.1).
Evaluating or enclosing L−1 (as is needed if T is of Newton type, as in 13.2)
is, however, not directly possible in general, and it is unclear how an ap-
proximation C ≈ L−1 should be computed such that I −CL or I −LC has
a norm less than 1 (as in 13.3).

Therefore – choosing a Newton-type operator T – a normwise bound for
L−1, and also for the other ingredients of T , will be used instead. Again
there is an analogy to the finite-dimensional case. If the system dimension
is too large and hence the effort for enclosing – or even approximating –
an inverse matrix A−1 is too high, a lower bound for the smallest singular
value of A is used as in Section 10.8.1, which obviously corresponds to a
norm bound for A−1. If a norm ball V (centred at the origin) is chosen
as a candidate for (16.3), then (16.3) results in an inequality involving the
radius of V and the norm bounds indicated above. Since these bounds are
computable, either directly or by additional computer-assisted means (such
as the bound for ‖L−1‖), the resulting sufficient inequality for (16.3) can
be checked.

It is important to remark that this inequality will indeed be satisfied if the
approximate solution ũ has been computed with sufficient accuracy, and if
‖L−1‖ is not too large (i.e., if the situation is ‘sufficiently non-degenerate’).
Both conditions also appear in the finite-dimensional case.

We remark that Nagatou, Nakao and Yamamoto (1999), Nakao (1993)
and Nakao and Yamamoto (1995) have chosen an approach avoiding the
direct computation of a bound for ‖L−1‖. They use a finite-dimensional
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projection of L, which can be treated by the linear algebra verifying tools
explained in the previous sections. However, the (infinite-dimensional) pro-
jection error also needs to be bounded in a suitable way, as in Nakao (1988)
or Nakao et al. (2005), which is certainly possible for not too complicated
domains Ω, but may be problematic, e.g., for unbounded domains.26

16.1. Abstract formulation

In order to see the structural essence of the proposed enclosure methods for
problem (16.1), and in particular its analogy to finite-dimensional problems,
we first study (16.1) in the abstract form

Find u ∈ X satisfying F(u) = 0, (16.4)

with (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y ) denoting two real Hilbert spaces, and F :
X → Y some Fréchet-differentiable mapping. Concrete choices of X and Y
will be discussed in the next two subsections.

Let ũ ∈ X denote some approximate solution to (16.4) (computed, e.g.,
by numerical means), and denote by

L := F ′(ũ) : X → Y, x !→ L[x] (16.5)

the Fréchet derivative of F at ũ, i.e., L ∈ B(X,Y ) (the Banach space of all
bounded linear operators from X to Y ) and

lim
h∈X\{0}

h→0

1
‖h‖X

‖F(ũ+ h)−F(ũ)− L[h]‖Y = 0.

Suppose that constants δ and K, and a non-decreasing function g : [0,∞)→
[0,∞), are known such that

‖F(ũ)‖Y ≤ δ, (16.6)

i.e., δ bounds the defect (residual) of the approximate solution ũ to (16.4),

‖u‖X ≤ K ‖L[u]‖Y for all u ∈ X, (16.7)

i.e., K bounds the inverse of the linearization L,

‖F ′(ũ+ u)−F ′(ũ)‖B(X,Y ) ≤ g(‖u‖X) for all u ∈ X, (16.8)

i.e., g majorizes the modulus of continuity of F ′ at ũ, and

g(t) → 0 as t→ 0 (16.9)

(which, in particular, requires F ′ to be continuous at ũ).
The concrete computation of such δ,K, and g is the main challenge in our

approach, with particular emphasis onK. We will however not address these

26 Part of the following is taken from Plum (2008).
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questions on the abstract level, but postpone them to the more specific case
of the boundary value problem (16.1). For now, assume that (16.6)–(16.9)
hold true.

In order to obtain a suitable fixed-point formulation (16.3) for our problem
(16.4), the operator L must be onto because L−1 : Y → X will be used.
(Note that L is one-to-one by (16.7).) There are two alternative ways to do
this, both suited to the later treatment of problem (16.1).

(1) The compact case. Suppose that F admits a splitting

F = L0 + G, (16.10)

with a bijective linear operator L0 ∈ B(X,Y ), and a compact and
Fréchet-differentiable operator G : X → Y , with compact Fréchet
derivative G′(ũ). Then the Fredholm alternative holds for the equa-
tion L[u] = r (where r ∈ Y ), and since L is one-to-one by (16.7), it is
therefore onto.

(2) The dual and symmetric case. Suppose that Y = X ′, the (topological)
dual of X, i.e., the space of all bounded linear functionals l : X → R.
X ′(= B(X,R)) is a Banach space endowed with the usual operator
sup-norm. Indeed, this norm is generated by the inner product (which
therefore makes X ′ a Hilbert space)

〈r, s〉X′ := 〈Φ−1[r],Φ−1[s]〉X (r, s ∈ X ′), (16.11)

where Φ : X → X ′ is the canonical isometric isomorphism given by

(Φ[u])[v] := 〈u, v〉X (u, v ∈ X). (16.12)

To ensure that L : X → Y = X ′ is onto, we make the additional assump-
tion that Φ−1L : X → X is symmetric with respect to 〈·, ·〉X , which by
(16.12) amounts to the relation

(L[u])[v] = (L[v])[u] for all u, v ∈ X. (16.13)

This implies the denseness of the range (Φ−1L)(X) ⊂ X: given any u in its
orthogonal complement, we have, for all v ∈ X,

0 = 〈u, (Φ−1L)[v]〉X = 〈(Φ−1L)[u], v〉X ,

and hence (Φ−1L)[u] = 0, which implies L[u] = 0 and thus u = 0 by (16.7).
Therefore, since Φ is isometric, the range L(X) ⊂ X ′ is dense. To prove

that L is onto, it remains to show that L(X) ⊂ X ′ is closed. For this
purpose, let (L[un])n∈N denote some sequence in L(X) converging to some
r ∈ X ′. Then (16.7) shows that (un)n∈N is a Cauchy sequence in X. With
u ∈ X denoting its limit, the boundedness of L implies L[un] → L[u] (n→
∞). Thus, r = L[u] ∈ L(X), proving closedness of L(X).
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We are now able to formulate and prove our main theorem, which is
similar to the Newton–Kantorovich theorem.

Theorem 16.1. Let δ,K, g satisfy conditions (16.6)–(16.9). Suppose that
some α > 0 exists such that

δ ≤ α

K
−G(α), (16.14)

where G(t) :=
∫ t
0 g(s) ds. Moreover, suppose that:

(1) the compact case applies, or

(2) the dual and symmetric case applies, and we have the additional con-
dition

Kg(α) < 1. (16.15)

Then, there exists a solution u ∈ X of the equation F(u) = 0 satisfying

‖u− ũ‖X ≤ α. (16.16)

Remark 1. Due to (16.9), G(t) =
∫ t
0 g(s) ds is superlinearly small as t→

0. Therefore, the crucial condition (16.14) is indeed satisfied for some ‘small’
α if K is ‘moderate’ (i.e., not too large) and δ is sufficiently small, which
means, according to (16.6), that the approximate solution ũ to problem
(16.4) must be computed with sufficient accuracy , and (16.14) tells us how
accurate the computation has to be.

Remark 2. To prove Theorem 16.1, the (abstract) Green’s operator L−1

will be used to reformulate problem (16.4) as a fixed-point equation, and
some fixed-point theorem will be applied. If the space X were finite-dim-
ensional, Brouwer’s Fixed-Point Theorem would be most suitable for this
purpose. In the application to differential equation problems such as (16.1),
however, X has to be infinite-dimensional, whence Brouwer’s Theorem is
not applicable. There are two choices.

(S) We use the generalization of Brouwer’s theorem to infinite-dimensional
spaces, i.e., Schauder’s Fixed-Point Theorem, which explicitly requires
additional compactness properties (holding automatically in the finite-
dimensional case). In our later application to (16.1), this compactness
is given by compact embeddings of Sobolev function spaces, provided
that the domain Ω is bounded (or at least has finite measure).

(B) We use Banach’s Fixed-Point Theorem. No compactness is needed, but
the additional contraction condition (16.15) is required. Due to (16.9),
this condition is, however, not too critical if α (computed according to
(16.14)) is ‘small’. This option includes unbounded domains Ω.
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Proof of Theorem 16.1. We rewrite problem (16.4) as

L[u− ũ] = −F(ũ)−
{
F(u)−F(ũ)− L[u− ũ]

}
,

which due to the bijectivity of L amounts to the equivalent fixed-point
equation

v ∈ X, v = −L−1
[
F(ũ) + {F(ũ+ v)−F(ũ)− L[v]}

]
=: T (v) (16.17)

for the error v = u− ũ. We show the following properties of the fixed-point
operator T : X → X:

(i) T (V ) ⊂ V for the closed, bounded, non-empty, and convex norm ball

V := {v ∈ X : ‖v‖X ≤ α},

(ii) T is continuous and compact (in case (1)) or contractive on V (in
case (2)), respectively.

Then, Schauder’s Fixed-Point Theorem (in case (1)) or Banach’s Fixed-
Point Theorem (in case (2)), respectively, gives a solution v∗ ∈ V of the
fixed-point equation (16.17), whence by construction u∗ := ũ + v∗ is a
solution of F(u) = 0 satisfying (16.16).

To prove (i) and (ii), we first note that for every differentiable function f :
[0, 1]→ Y , the real-valued function ‖f‖Y is differentiable almost everywhere
on [0, 1], and (d/dt)‖f‖Y ≤ ‖f ′‖Y almost everywhere on [0, 1]. Hence, for
every v, ṽ ∈ X,

‖F(ũ+ v)−F(ũ+ ṽ)− L[v − ṽ]‖Y (16.18)

=
∫ 1

0

d
dt
‖F(ũ+ (1− t)ṽ + tv)−F(ũ+ ṽ)− tL[v − ṽ]‖Y dt

≤
∫ 1

0
‖{F ′(ũ+ (1− t)ṽ + tv)− L}[v − ṽ]‖Y dt

≤
∫ 1

0
‖F ′(ũ+ (1− t)ṽ + tv)− L‖B(X,Y ) dt · ‖v − ṽ‖X

≤
∫ 1

0
g(‖(1− t)ṽ + tv‖X) dt · ‖v − ṽ‖X ,

using (16.5) and (16.8) at the last step. Choosing ṽ = 0 in (16.18) we obtain,
for each v ∈ X,

‖F(ũ+ v)−F(ũ)− L[v]‖Y ≤
∫ 1

0
g(t‖v‖X) dt · ‖v‖X (16.19)

=
∫ ‖v‖X

0
g(s) ds = G(‖v‖X).
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Furthermore, (16.18) and the fact that g is non-decreasing imply, for all
v, ṽ ∈ V ,

‖F(ũ+ v)−F(ũ+ ṽ)− L[v − ṽ]‖Y (16.20)

≤
∫ 1

0
g((1− t)‖ṽ‖X + t‖v‖X) dt · ‖v − ṽ‖X

≤ g(α)‖v − ṽ‖X .

To prove (i), let v ∈ V , i.e., ‖v‖X ≤ α. Now (16.17), (16.7), (16.6), (16.19),
and (16.14) imply

‖T (v)‖X ≤ K‖F(ũ) + {F(ũ+ v)−F(ũ)− L[v]}‖Y

≤ K(δ +G(‖v‖X)) ≤ K(δ +G(α)) ≤ α,

which gives T (v) ∈ V . Thus, T (V ) ⊂ V .
To prove (ii), suppose first that the compact case applies. So (16.10),

which in particular gives L = L0 + G′(ũ), and (16.17) imply

T (v) = −L−1
[
F(ũ) + {G(ũ+ v)− G(ũ)− G′(ũ)[v]}

]
for all v ∈ X,

whence continuity and compactness of T follow from continuity and com-
pactness of G and G′(ũ), and the boundedness of L−1 ensured by (16.7).

If the dual and symmetric case applies, (16.17), (16.7), and (16.20) imply,
for v, ṽ ∈ V ,

‖T (v)− T (ṽ)‖X = ‖L−1{F(ũ+ v)−F(ũ+ ṽ)− L[v − ṽ]}‖X

≤ K‖F(ũ+ v)−F(ũ+ ṽ)− L[v − ṽ]‖Y

≤ Kg(α)‖v − ṽ‖X ,

whence (16.15) shows that T is contractive on V . This completes the proof
of Theorem 16.1.

In the following two subsections, the abstract approach developed in this
section will be applied to the elliptic boundary value problem (16.1). This
can be done in (essentially two) different ways, i.e., by different choices of
the Hilbert spaces X and Y , resulting in different general assumptions (e.g.,
smoothness conditions) to be made for the ‘data’ of the problem and the
numerical approximation ũ, and different conditions (16.6)–(16.8), (16.14),
(16.15), as well as different ‘results’, i.e., existence statements and error
bounds (16.16).

At this point, we briefly report on some other applications of our abstract
setting which cannot be discussed in more detail in this article.
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For parameter-dependent problems (where F in (16.4), or f in (16.1),
depends on an additional parameter λ), one is often interested in branches
(uλ)λ∈I of solutions. By additional perturbation techniques, Plum (1995)
generalized the presented method to a verification method for such solution
branches, as long as the parameter interval I defining the branch is compact.

Such branches may, however, contain turning points (where a branch
‘returns’ at some value λ∗) or bifurcation points (where several – usually
two – branches cross each other). Near such points, the operator L defined
in (16.5) is ‘almost’ singular, i.e., (16.7) holds only with a very large K,
or not at all, and our approach breaks down. However, there are means to
overcome these problems.

In the case of (simple) turning points, Plum (1994) used the well-known
method of augmenting the given equation by a bordering equation (as in
Section 13.2): the ‘new’ operator F in (16.4) contains the ‘old’ one and the
bordering functional, and the ‘new’ operator L is regular near the turning
point if the bordering equation has been chosen appropriately.

In the case of (simple) symmetry-breaking bifurcations, Plum (1996) in-
cludes in a first step the symmetry in the spaces X and Y , which excludes
the symmetry-breaking branch and regularizes the problem, whence an ex-
istence and enclosure result for the symmetric branch can be obtained. In
a second step, the symmetric branch is excluded by some transformation
(similar to the Lyapunov–Schmidt reduction), and defining a corresponding
new operator F an existence and enclosure result can also be obtained for
the symmetry-breaking branch.

Lahmann and Plum (2004) treated non-self-adjoint eigenvalue problems,
again using bordering equation techniques normalizing the unknown eigen-
function. So F now acts on pairs (u, λ), and is defined via the eigenvalue
equation and the (scalar) normalizing equation. In this way it was possi-
ble to give the first known instability proof of the Orr–Sommerfeld equa-
tion with Blasius profile, which is a fourth-order ODE eigenvalue problem
on [0,∞).

Also (other) higher-order problems are covered by our abstract setting.
Breuer, Horák, McKenna and Plum (2006) could prove the existence of
36 travelling wave solutions of a fourth-order nonlinear beam equation on the
real line. Biharmonic problems (with ∆∆u as leading term) are currently
being investigated by B. Fazekas; see also Fazekas, Plum and Wieners (2005).

16.2. Strong solutions

We first study the elliptic boundary value problem (16.1) under the addi-
tional assumptions that f and ∂f/∂y are continuous on Ω̄ × R, that the
domain Ω ⊂ R

n (with n ≤ 3) is bounded with Lipschitz boundary, and H2-
regular (i.e., , for each r ∈ L2(Ω), and that the Poisson problem −∆u = r
in Ω, u = 0 on ∂Ω has a unique solution u ∈ H2(Ω) ∩H1

0 (Ω)).
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Here and in the following, L2(Ω) denotes the Hilbert space of all (equiv-
alence classes of) square-integrable Lebesgue-measurable real-valued func-
tions on Ω, endowed with the inner product

〈u, v〉L2 :=
∫

Ω
uv dx,

and Hk(Ω) is the Sobolev space of all functions u ∈ L2(Ω) with weak deriva-
tives up to order k in L2(Ω). Hk(Ω) is a Hilbert space with the inner product

〈u, v〉Hk :=
∑

α∈N
n
0|α|≤k

〈Dαu,Dαv〉L2 ,

where |α| := α1+· · ·+αn, which can also be characterized as the completion
of C∞(Ω̄) with respect to 〈·, ·〉Hk . Replacement of C∞(Ω̄) by C∞

0 (Ω) (with
the subscript 0 indicating compact support in Ω), yields, by completion, the
Sobolev space Hk

0 (Ω), which incorporates the vanishing of all derivatives up
to order k − 1 on ∂Ω in a weak sense.

Note that piecewise Ck-smooth functions u (e.g., form functions of finite
element methods) belong to Hk(Ω) if and only if they are (globally) in
Ck−1(Ω).

For example, the assumption that Ω is H2-regular is satisfied for C2- (or
C1,1-)smoothly bounded domains (Gilbarg and Trudinger 1983), and also
for convex polygonal domains Ω ⊂ R

2 (Grisvard 1985); it is not satisfied,
e.g., for domains with re-entrant corners, such as the L-shaped domain
(−1, 1)2 \ [0, 1)2.

Under the assumptions made, we can choose the spaces

X := H2(Ω) ∩H1
0 (Ω), Y := L2(Ω), (16.21)

and the operators

F := L0 + G, L0[u] := −∆u, G(u) := f(·, u), (16.22)

whence indeed our problem (16.1) amounts to the abstract problem (16.4).
Moreover, L0 : X → Y is bijective by the assumed unique solvability of
the Poisson problem, and clearly bounded, that is, in B(X,Y ). Finally,
G : X → Y is Fréchet-differentiable with derivative

G′(u)[v] =
∂f

∂y
(·, u)v, (16.23)

which follows from the fact that G has this derivative as an operator from
C(Ω̄) (endowed with the maximum norm ‖ · ‖∞) into itself, and that the
embeddings H2(Ω) ↪→ C(Ω̄) and C(Ω̄) ↪→ L2(Ω) are bounded. In fact,
H2(Ω) ↪→ C(Ω̄) is even a compact embedding by the famous Sobolev–
Kondrachov–Rellich Embedding Theorem (Adams 1975) (and since n ≤ 3),
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which shows that G and G′(u) (for any u ∈ X) are compact. Thus, the
compact case (see (16.10)) applies.

For the application of Theorem 16.1, we are therefore left to comment
on the computation of constants δ, K and a function g satisfying (16.6)–
(16.9) (in the setting (16.21), (16.22)). But first, some comments on the
computation of the approximate solution ũ are necessary.

16.2.1. Computation of ũ
Since ũ is required to be in X = H2(Ω) ∩ H1

0 (Ω), it has to satisfy the
boundary condition exactly (in the sense of being in H1

0 (Ω)), and it needs
to have weak derivatives in L2(Ω) up to order 2. If finite elements are
used, this implies the need for C1-elements (i.e., globally C1-smooth finite
element basis functions), which is a drawback at least on a technical level.
(In the alternative approach proposed in the next subsection, this drawback
is avoided.)

If Ω = (0, a)× (0, b) is a rectangle, there are, however, many alternatives
to finite elements, for example polynomial or trigonometric polynomial basis
functions. In the latter case, ũ is given in the form

ũ(x1, x2) =
N∑

i=1

M∑
j=1

αij sin
(
iπ
x1

a

)
sin

(
jπ
x2

b

)
, (16.24)

with coefficients αij to be determined by some numerical procedure. Such
a procedure usually consists of a Newton iteration, together with a Ritz–
Galerkin or a collocation method, and a linear algebraic system solver, which
possibly incorporates multigrid methods. To start the Newton iteration, a
rough initial approximation is needed, which may be obtained by path-
following methods, or by use of the numerical mountain pass algorithm
proposed by Choi and McKenna (1993).

An important remark is that, no matter how ũ is given or which numerical
method is used, there is no need for any rigorous computation at this stage,
and therefore the whole variety of numerical methods applies.

16.2.2. Defect bound δ
Computing some δ satisfying (16.6) means, due to (16.21) and (16.22), com-
puting an upper bound for (the square root of)∫

Ω

[
−∆ũ+ f(·, ũ)

]2 dx, (16.25)

which should be ‘small’ if ũ is a ‘good’ approximate solution. In some cases
this integral can be calculated in closed form, by hand or by computer alge-
bra routines, for example if f is polynomial and ũ is piecewise polynomial
(as it is if finite element methods have been used to compute it), or if f(x, ·)
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is polynomial and both f(·, y) and ũ (as in (16.24)) are trigonometric poly-
nomials. The resulting formulas have to be evaluated rigorously , to obtain
a true upper bound for the integral in (16.25).

If closed-form integration is impossible, a quadrature formula should be
applied, possibly piecewise, to the integral in (16.25), using, for example,
the methods described in Section 12. To obtain a true upper bound for the
integral, in addition a remainder term bound for the quadrature formula is
needed, which usually requires rough ‖ · ‖∞-bounds for some higher deriva-
tives of the integrand. These rough bounds can be obtained, for example,
by subdividing Ω into (many) small boxes, and performing interval evalu-
ations of the necessary higher derivatives over each of these boxes (which
gives true supersets of the function value ranges over each of the boxes, and
thus, by union, over Ω).

16.2.3. Bound K for L−1

The next task is the computation of a constant K satisfying (16.7), which,
due to (16.21)–(16.23), means

‖u‖H2 ≤ K‖L[u]‖L2 for all u ∈ H2(Ω) ∩H1
0 (Ω), (16.26)

where L : H2(Ω) ∩H1
0 (Ω) → L2(Ω) is given by

L[u] = −∆u+ cu, c(x) :=
∂f

∂y
(x, ũ(x)) (x ∈ Ω̄). (16.27)

The first (and most crucial) step towards (16.26) is the computation of a
constant K0 such that

‖u‖L2 ≤ K0‖L[u]‖L2 for all u ∈ H2(Ω) ∩H1
0 (Ω). (16.28)

Choosing some constant lower bound c for c on Ω̄, and using the compact
embedding H2(Ω) ↪→ L2(Ω), we find by standard means that (L − c)−1 :
L2(Ω) → L2(Ω) is compact, symmetric, and positive definite, and hence has
a 〈·, ·〉L2-orthonormal and complete system (ϕk)k∈N of eigenfunctions ϕk ∈
H2(Ω) ∩H1

0 (Ω), with associated sequence (µk)k∈N of (positive) eigenvalues
converging monotonically to 0. Consequently, L[ϕk] = λkϕk for k ∈ N, with
λk = µ−1

k + c converging monotonically to +∞. Series expansion yields, for
every u ∈ H2(Ω) ∩H1

0 (Ω),

‖L[u]‖2L2 =
∞∑

k=1

〈L[u], ϕk〉2L2 =
∞∑

k=1

〈u, L[ϕk]〉2L2 =
∞∑

k=1

λ2
k〈u, ϕk〉2L2

≥
(
min
j∈N

λ2
j

) ∞∑
k=1

〈u, ϕk〉2L2 =
(
min
j∈N

λ2
j

)
‖u‖2L2 ,
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which shows that (16.28) holds if (and only if) λj �= 0 for all j ∈ N, and

K0 ≥
(
min
j∈N

|λj |
)−1

. (16.29)

Thus, bounds for the eigenvalue(s) of L neighbouring 0 are needed to com-
pute K0. Such eigenvalue bounds can be obtained by computer-assisted
means of their own. For example, upper bounds to λ1, . . . , λN (with N ∈ N

given) are easily and efficiently computed by the Rayleigh–Ritz method
(Rektorys 1980), as follows. Let ϕ̃1, . . . , ϕ̃N ∈ H2(Ω) ∩ H1

0 (Ω) denote lin-
early independent trial functions, for example approximate eigenfunctions
obtained by numerical means, and form the matrices

A1 := (〈L[ϕ̃i], ϕ̃j〉L2)i,j=1,...,N , A0 := (〈ϕ̃i, ϕ̃j〉L2)i,j=1,...,N .

Then, with Λ1 ≤ · · · ≤ ΛN denoting the eigenvalues of the matrix eigenvalue
problem

A1x = ΛA0x,

which can be enclosed by the methods given in Section 13.4, the Rayleigh–
Ritz method gives

λi ≤ Λi for i = 1, . . . , N.

However, to compute K0 via (16.29), lower eigenvalue bounds are also
needed, which constitute a more complicated task than upper bounds.
The most accurate method for this purpose was proposed by Lehmann
(1963), and its range of applicability improved by Goerisch (Behnke and
Goerisch 1994). Its numerical core is again (as in the Rayleigh–Ritz method)
a matrix eigenvalue problem, but the accompanying analysis is more in-
volved.

In particular, in order to compute lower bounds to the first N eigenvalues,
a rough lower bound to the (N + 1)st eigenvalue must already be known.
This a priori information can usually be obtained via a homotopy method
connecting a simple ‘base problem’ with known eigenvalues to the given
eigenvalue problem, such that all eigenvalues increase (index-wise) along
the homotopy; details are given by Plum (1997) and Breuer et al. (2006).

Finding a base problem for the eigenvalue problem L[u] = λu, and a
suitable homotopy connecting them, is often possible along the following
lines. If Ω is a bounded rectangle (whence the eigenvalues of −∆ on H1

0 (Ω)
are known), choose a constant lower bound c for c on Ω, and the coefficient
homotopy

cs(x) := (1− s)c+ sc(x), (x ∈ Ω, 0 ≤ s ≤ 1).

Then, the family of eigenvalue problems

−∆u+ csu = λ(s)u in Ω, u = 0 on ∂Ω
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connects the explicitly solvable constant-coefficient base problem (s = 0) to
the problem L[u] = λu (s = 1), and the eigenvalues increase in s, since the
Rayleigh quotient does, by Poincaré’s min-max principle.

If Ω is not a rectangle (or a ball), we can first choose a rectangle Ω0

containing Ω, and a domain deformation homotopy between Ω0 and Ω, to
enclose the (first M) eigenvalues of −∆ on H1

0 (Ω): see, e.g., Plum and
Wieners (2002). Then, the above coefficient homotopy is applied in a sec-
ond step.

Once a constant K0 satisfying (16.28) is known, the desired constant K
(satisfying (16.26)) can relatively easily be calculated by explicit a priori
estimates. With c again denoting a constant lower bound for c, we obtain
by partial integration, for each u ∈ H2(Ω) ∩H1

0 (Ω),

‖u‖L2‖L[u]‖L2 ≥ 〈u, L[u]〉L2 =
∫

Ω
(|∇u|2 + cu2) dx ≥ ‖∇u‖2L2 + c‖u‖2L2 ,

which implies, together with (16.28), that

‖∇u‖L2 ≤ K1‖L[u]‖L2 , where K1 :=

{ √
K0(1− cK0) if cK0 ≤ 1

2 ,
1

2
√

c otherwise.
(16.30)

To complete the H2-bound required in (16.26), the L2-norm of the (Frobe-
nius matrix norm of the) Hessian matrix uxx of u ∈ H2(Ω)∩H1

0 (Ω) is to be
estimated. If Ω is convex (as we shall assume now), then

‖uxx‖L2 ≤ ‖∆u‖L2 for all u ∈ H2(Ω) ∩H1
0 (Ω); (16.31)

see, e.g., Grisvard (1985) and Ladyzhenskaya and Uraĺtseva (1968). For
the non-convex case, see Grisvard (1985) and Plum (1992). Now, with c̄
denoting an additional upper bound for c, we choose

µ := max
{

0,
1
2
(c+ c̄)

}
,

and calculate

‖∆u‖L2 ≤ ‖ −∆u+ µu‖L2 ≤ ‖L[u]‖L2 + ‖µ− c‖∞‖u‖L2 .

Using that ‖µ − c‖∞ = max{−c, 1
2(c̄ − c)}, and combining with (16.28)

results in

‖∆u‖L2 ≤ K2‖L[u]‖L2 , where K2 := 1+K0 max
{
−c, 1

2
(c̄−c)

}
. (16.32)

Now, (16.28), (16.30) and (16.32) give (16.26) as follows. For quantitative
purposes, we use the modified inner product

〈u, v〉H2 := γ0〈u, v〉L2 + γ1〈∇u,∇v〉L2 + γ2〈∆u,∆v〉L2 (16.33)
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(with positive weights γ0, γ1, γ2) on X, which, due to (16.31), and to the ob-
vious reverse inequality ‖∆u‖L2 ≤

√
n‖uxx‖L2 , is equivalent to the canonical

one. Then, (16.26) obviously holds for

K :=
√
γ0K2

0 + γ1K2
1 + γ2K2

2 , (16.34)

with K0,K1,K2 from (16.28), (16.30) and (16.32).

16.2.4. Local Lipschitz bound g for F ′

By (16.21), (16.22) and (16.23), condition (16.8) reads∥∥∥∥
[
∂f

∂y
(·, ũ+ u)− ∂f

∂y
(·, ũ)

]
v

∥∥∥∥
L2

≤ g(‖u‖H2)‖v‖H2 (16.35)

for all u, v ∈ H2(Ω) ∩H1
0 (Ω).

We start with a monotonically non-decreasing function g̃ : [0,∞) → [0,∞)
satisfying∣∣∣∣∂f∂y (x, ũ(x) + y)− ∂f

∂y
(x, ũ(x))

∣∣∣∣ ≤ g̃(|y|) for all x ∈ Ω, y ∈ R, (16.36)

and g̃(t) → 0 as t → 0+. In practice, such a function g̃ can usually be
calculated by hand if a bound for ‖ũ‖∞ is available, which in turn can be
computed by interval evaluations of ũ over small boxes (as described at
the end of Section 16.2.2). Using g̃, the left-hand side of (16.35) can be
bounded by

g̃(‖u‖∞)‖v‖L2 , (16.37)

leaving us to estimate both the norms ‖ · ‖L2 and ‖ · ‖∞ by ‖ · ‖H2 . With ρ∗
denoting the smallest eigenvalue of

−∆u = ρu, u ∈ H2(Ω) ∩H1
0 (Ω),

we obtain by eigenfunction expansion that

‖∇u‖2L2 = 〈u,−∆u〉L2 ≥ ρ∗‖u‖2L2 , ‖∆u‖2L2 ≥ (ρ∗)2‖u‖2L2 ,

and thus, by (16.33),

‖u‖L2 ≤ [γ0+γ1ρ
∗+γ2(ρ∗)2]−

1
2 ‖u‖H2 for all u ∈ H2(Ω)∩H1

0 (Ω). (16.38)

Furthermore, in Plum (1992, Corollary 1) constants C0, C1, C2 are calcu-
lated which depend on Ω in a rather simple way, allowing explicit compu-
tation, such that

‖u‖∞ ≤ C0‖u‖L2 + C1‖∇u‖L2 + C2‖uxx‖L2 for all u ∈ H2(Ω) ∩H1
0 (Ω),
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whence by (16.31) and (16.33) we obtain

‖u‖∞ ≤
[
γ−1

0 C2
0 + γ−1

1 C2
1 + γ−1

2 C2
2

] 1
2 ‖u‖H2 for all u ∈ H2(Ω) ∩H1

0 (Ω).
(16.39)

Using (16.38) and (16.39) in (16.37), we find that (16.35) (and (16.9)) hold
for

g(t) := [γ0 + γ1ρ
∗ + γ2(ρ∗)2]−

1
2 g̃

([
γ−1

0 C2
0 + γ−1

1 C2
1 + γ−1

2 C2
2

] 1
2 t
)
. (16.40)

16.2.5. A numerical example
Consider the problem

∆u+u2 = s ·sin(πx1) sin(πx2) (x = (x1, x2) ∈ Ω := (0, 1)2), u = 0 on ∂Ω.
(16.41)

The results reported here were established in Breuer, McKenna and Plum
(2003).

Since the 1980s it had been conjectured in the PDE community that
problem (16.41) has at least four solutions for sufficiently large s > 0.

For s = 800, indeed four essentially different approximate solutions could
be computed by the numerical mountain pass algorithm developed by Choi
and McKenna (1993), where ‘essentially different’ means that none of them
is an elementary symmetry transform of another one. Using finite Fourier
series of the form (16.24), and a Newton iteration in combination with a col-
location method, the accuracy of the mountain pass solutions was improved,
resulting in highly accurate approximations ũ1, . . . , ũ4 of the form (16.24).

Then the described verification method was applied to each of these
four approximations, and the corresponding four inequalities (16.14) were
successfully verified, with four error bounds α1, . . . , α4. Therefore, Theo-
rem 16.1 guarantees the existence of four solutions

u1, . . . , u4 ∈ H2(Ω) ∩H1
0 (Ω)

of problem (16.41) such that

‖ui − ũi‖H2 ≤ αi for i = 1, . . . , 4.

Using the embedding inequality (16.39), in addition

‖ui − ũi‖∞ ≤ βi for i = 1, . . . , 4 (16.42)

for βi := [γ−1
0 C2

0 + γ−1
1 C2

1 + γ−1
2 C2

2 ]
1
2αi. Finally, it is easy to check on the

basis of the numerical data that

‖Sũi − ũj‖∞ > βi + βj for i, j = 1, . . . , 4, i �= j

for each elementary (rotation or reflection) symmetry transformation S of
the square Ω, so that u1, . . . , u4 are indeed essentially different.
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Figure 16.1. Four solutions to problem (16.41), s = 800.

Figure 16.1 shows plots of ũ1, . . . , ũ4 (one might also say u1, . . . , u4, since
the error bounds βi are much smaller than the ‘optical accuracy’ of the
figure). The first two solutions are fully symmetric (with respect to reflection
at the axes x1 = 1

2 , x2 = 1
2 , x1 = x2, x1 = 1 − x2), while the third is

symmetric only with respect to x2 = 1
2 , and the fourth only with respect

to x1 = x2. Table 16.1 shows the defect bounds δ (see (16.6), (16.25)), the
constants K satisfying (16.7) (or (16.26)), and the ‖ · ‖∞-error bounds β
(see (16.42)) for the four solutions.

We wish to remark that, two years after publication of this result, Dancer
and Yan (2005) gave a more general analytical proof (which we believe was
stimulated by Breuer et al. (2003)); they even proved that the number of
solutions of problem (16.41) becomes unbounded as s→∞.

16.3. Weak solutions

We will now investigate problem (16.1) under weaker assumptions on the
domain Ω ⊂ R

n and on the numerical approximation method, but stronger
assumptions on the nonlinearity f , compared with the ‘strong solutions’
approach described in the previous subsection. Ω is now allowed to be any
(bounded or unbounded) domain with Lipschitz boundary. We choose the
spaces

X := H1
0 (Ω), Y := H−1(Ω) (16.43)
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Table 16.1. Enclosure results for problem (16.41).

Approximate solution Defect bound δ K (see (16.26)) Error bound β

ũ1 0.0023 0.2531 5.8222 · 10−4

ũ2 0.0041 4.9267 0.0228
ũ3 0.0059 2.8847 0.0180
ũ4 0.0151 3.1436 0.0581

for our abstract setting, where H−1(Ω) := (H1
0 (Ω))′ denotes the topological

dual space of H1
0 (Ω), i.e., the space of all bounded linear functionals on

H1
0 (Ω), where H1

0 (Ω) is endowed with the inner product

〈u, v〉H1
0

:= 〈∇u,∇v〉L2 + σ〈u, v〉L2 (16.44)

(with some parameter σ > 0 to be chosen later), and H−1(Ω) with the ‘dual’
inner product given by (16.11), with Φ from (16.12).

To interpret our problem (16.1) in these spaces, we first need to define ∆u
(for u ∈ H1

0 (Ω)), or more generally, div ρ (for ρ ∈ L2(Ω)n), as an element of
H−1(Ω). This definition simply imitates partial integration: the functional
div ρ : H1

0 (Ω) → R is given by

(div ρ)[ϕ] := −
∫

Ω
ρ · ∇ϕ dx for all ϕ ∈ H1

0 (Ω), (16.45)

implying in particular that

|(div ρ)[ϕ]| ≤ ‖ρ‖L2‖∇ϕ‖L2 ≤ ‖ρ‖L2‖ϕ‖H1
0
,

whence div ρ is indeed a bounded linear functional, and

‖div ρ‖H−1 ≤ ‖ρ‖L2 . (16.46)

Using this definition of ∆u(= div(∇u)), it is easy to check that the canonical
isometric isomorphism Φ : H1

0 (Ω) → H−1(Ω) defined in (16.12) is now given
by (note that (16.44))

Φ[u] = −∆u+ σu (u ∈ H1
0 (Ω)), (16.47)

where σu ∈ H1
0 (Ω) is interpreted as an element of H−1(Ω), as explained in

the following.
Next, we give a meaning to a function being an element of H−1(Ω), in

order to define f(·, u) in (16.1) (and σu in (16.47)) in H−1(Ω). For this
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purpose, let L denote the linear space consisting of all (equivalence classes
of) Lebesgue-measurable functions w : Ω → R such that

sup
{

1
‖ϕ‖H1

0

∫
Ω
|wϕ|dx : ϕ ∈ H1

0 (Ω) \ {0}
}
<∞. (16.48)

For each w ∈ L, we can define an associated linear functional �w : H1
0 (Ω) →

R by

�w[ϕ] :=
∫

Ω
wϕdx for all ϕ ∈ H1

0 (Ω).

�w is bounded due to (16.48) and hence in H−1(Ω). Identifying w ∈ L with
its associated functional �w ∈ H−1(Ω), it follows that

L ⊂ H−1(Ω), (16.49)

and ‖w‖H−1 is less than or equal to the left-hand side of (16.48), for every
w ∈ L.

To get a better impression of the functions contained in L, recall that
Sobolev’s Embedding Theorem (Adams 1975, Theorem 5.4) gives H1

0 (Ω) ⊂
Lp(Ω), with bounded embedding H1

0 (Ω) ↪→ Lp(Ω) (i.e., there exists some
constant Cp > 0 such that ‖u‖Lp ≤ Cp‖u‖H1

0
for all u ∈ H1

0 (Ω)), for each

p ∈ [2,∞) if n = 2 and p ∈
[
2,

2n
n− 2

]
if n ≥ 3. (16.50)

Here, Lp(Ω) denotes the Banach space of (equivalence classes of) Lebesgue-
measurable functions u : Ω → R with finite norm

‖u‖Lp :=
[∫

Ω
|u|p dx

] 1
p

. (16.51)

With p in the range (16.50), and p′ denoting its dual number (i.e., p−1 +
(p′)−1 = 1), Hölder’s inequality, combined with the above embedding, yields
that, for all w ∈ Lp′(Ω),∫

Ω
|wϕ|dx ≤ ‖w‖Lp′‖ϕ‖Lp ≤ Cp‖w‖Lp′‖ϕ‖H1

0
,

implying w ∈ L, and ‖w‖H−1 ≤ Cp‖w‖Lp′ . Consequently,

Lp′(Ω) ⊂ L, (16.52)

and (note that (16.49)) the embedding Lp′(Ω) ↪→ H−1(Ω) is bounded, with
the same embedding constant Cp as in the ‘dual’ embedding H1

0 (Ω) ↪→
Lp(Ω). Note that the range (16.50) for p amounts to the range

p′ ∈ (1, 2] if n = 2 and p′ ∈
[

2n
n+ 2

, 2
]

if n ≥ 3 (16.53)
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for the dual number p′. By (16.52), the linear span of the union of all Lp′(Ω),
taken over p′ in the range (16.53), is a subspace of L, and this subspace is
in fact all of L, which is needed (and accessed) in practical applications.

Coming back to our problem (16.1), we now simply require that

f(·, u) ∈ L for all u ∈ H1
0 (Ω), (16.54)

in order to define the term f(·, u) as an element of H−1(Ω). Our abstract
setting requires, furthermore, that

F :
{
H1

0 (Ω) → H−1(Ω)
u !→ −∆u+ f(·, u) (16.55)

is Fréchet-differentiable. Since ∆ : H1
0 (Ω) → H−1(Ω) is linear and bounded

by (16.46), this amounts to the Fréchet-differentiability of

G :
{
H1

0 (Ω) → H−1(Ω)
u !→ f(·, u). (16.56)

For this purpose, we require (as in the previous subsection) that ∂f/∂y is
continuous on Ω̄× R. But in contrast to the ‘strong solutions’ setting, this
is not sufficient here; the main reason is that H1

0 (Ω) does not embed into
C(Ω̄). We need additional growth restrictions on f(x, y) or (∂f/∂y)(x, y)
as |y| → ∞.

An important (but not the only) admissible class consists of those func-
tions f which satisfy

f(·, 0) ∈ L, (16.57)
∂f

∂y
(·, 0) is a bounded function on Ω, (16.58)∣∣∣∣∂f∂y (x, y)− ∂f

∂y
(x, 0)

∣∣∣∣ ≤ c1|y|r1 + c2|y|r2 (x ∈ Ω, y ∈ R), (16.59)

with non-negative constants c1, c2, and with

0 < r1 ≤ r2 <∞ if n = 2, 0 < r1 ≤ r2 ≤
4

n− 2
if n ≥ 3. (16.60)

(A ‘small’ r1 will make condition (16.59) weak near y = 0, and a ‘large’ r2
will make it weak for |y| → ∞.)

Lemma 16.2. Let f satisfy (16.57)–(16.59), and assume the continuity of
∂f/∂y. Then G given by (16.56) is well-defined and Fréchet-differentiable,
with derivative G′(u) ∈ B(H1

0 (Ω), H−1(Ω)) (for u ∈ H1
0 (Ω)) given by

(G′(u)[v])[ϕ] =
∫

Ω

∂f

∂y
(·, u)vϕdx (v, ϕ ∈ H1

0 (Ω)). (16.61)



432 S. M. Rump

The proof of Lemma 16.2 is rather technical, and therefore omitted here.
According to (16.45) and (16.61), we have

(F ′(u)[ϕ])[ψ] =
∫

Ω

[
∇ϕ · ∇ψ +

∂f

∂y
(·, u)ϕψ

]
dx (16.62)

= (F ′(u)[ψ])[ϕ] (u, ϕ, ψ ∈ H1
0 (Ω))

for the operator F defined in (16.55), which in particular implies condition
(16.13) (for any ũ ∈ H1

0 (Ω); note that (16.5)), in the setting (16.43) and
(16.55). Thus, the dual and symmetric case (see Section 16.2) applies.

We mention that several simplifications and extensions are possible if the
domain Ω is bounded.

Again, we now comment on the computation of an approximate solution
ũ, and of the terms δ,K, and g satisfying (16.6)–(16.9), needed for the
application of Theorem 16.1, here in the setting (16.43) and (16.55).

16.3.1. Computation of ũ
By (16.43), ũ needs to be in X = H1

0 (Ω) only (and no longer in H2(Ω), as
in the ‘strong solutions’ approach of the previous subsection). In the finite
element context, this significantly increases the class of permitted elements;
for example, the ‘usual’ linear (or quadratic) triangular elements can be
used. In the case of an unbounded domain Ω, we are, furthermore, allowed
to use approximations ũ of the form

ũ =

{
ũ0 on Ω0,

0 on Ω \ Ω0,
(16.63)

with Ω0 ⊂ Ω denoting some bounded subdomain (the ‘computational’ do-
main), and ũ0 ∈ H1

0 (Ω0) some approximate solution of the differential equa-
tion (16.1) on Ω0, subject to Dirichlet boundary conditions on ∂Ω0.

We pose the additional condition of ũ being bounded , which on one hand
is satisfied anyway for all practical numerical schemes, and on the other
hand turns out to be very useful in the following.

16.3.2. Defect bound δ
By (16.43) and (16.55), condition (16.6) for the defect bound δ now amounts
to

‖ −∆ũ+ f(·, ũ)‖H−1 ≤ δ, (16.64)

which is a slightly more complicated task than computing an upper bound
for an integral (as was needed in Section 16.2). The best general way
seems to be the following. First compute an additional approximation
ρ ∈ H(div,Ω) to ∇ũ. (Here, H(div,Ω) denotes the space of all vector-
valued functions τ ∈ L2(Ω)n with weak derivative div τ in L2(Ω). Hence,



Verification methods 433

obviously H(div,Ω) ⊃ H1(Ω)n, and ρ can be computed e.g., by interpola-
tion (or some more general projection) of ∇ũ in H(div,Ω), or in H1(Ω)n.
It should be noted that ρ comes ‘for free’ as a part of the approximation, if
mixed finite elements are used to compute ũ.

Furthermore, according to the arguments before and after (16.52), applied
with p = p′ = 2,

‖w‖H−1 ≤ C2‖w‖L2 for all w ∈ L2(Ω). (16.65)

For explicit calculation of C2, we refer to the appendix in Plum (2008). By
(16.46) and (16.65),

‖ −∆ũ+ f(·, ũ)‖H−1 ≤ ‖div(−∇ũ+ ρ)‖H−1 + ‖ − div ρ+ f(·, ũ)‖H−1

≤ ‖∇ũ− ρ‖L2 + C2‖ − div ρ+ f(·, ũ)‖L2 , (16.66)

which reduces the computation of a defect bound δ (satisfying (16.64)) to
computing bounds for two integrals, i.e., we are back to the situation already
discussed in Section 16.2.2.

There is an alternative way to compute δ if ũ is of the form (16.63), with
ũ0 ∈ H2(Ω0) ∩ H1

0 (Ω0), and with Ω0 having a Lipschitz boundary. This
situation can arise, e.g., if Ω is the whole of R

n, and the ‘computational’
domain Ω0 is chosen as a ‘large’ rectangle, whence ũ0 can be given, for
instance, in the form (16.24).

Using partial integration on Ω0, it follows that

‖ −∆ũ+ f(·, ũ)‖H−1 ≤ (16.67)

C2

[
‖ −∆ũ0 + f(·, ũ0)‖2L2(Ω0) + ‖f(·, 0)‖2L2(Ω\Ω0)

] 1
2 + Ctr

∥∥∥∥∂ũ0

∂ν0

∥∥∥∥
L2(∂Ω0)

,

with Ctr denoting a constant for the trace embedding H1(Ω0) ↪→ L2(∂Ω0),
the explicit computation of which is addressed in the appendix of Plum
(2008), and ∂ũ0/∂ν0, the normal derivative on ∂Ω0.

16.3.3. Bound K for L−1

According to (16.43), condition (16.7) now reads

‖u‖H1
0
≤ K‖L[u]‖H−1 for all u ∈ H1

0 (Ω), (16.68)

with L defined in (16.5), now given by (note that (16.55), (16.56))

L = −∆ + G′(ũ) : H1
0 (Ω) → H−1(Ω).

Under the growth conditions (16.57)–(16.60), Lemma 16.2 (or (16.61)) shows
that, more concretely,

(L[ϕ])[ψ] =
∫

Ω

[
∇ϕ · ∇ψ +

∂f

∂y
(·, ũ)ϕψ

]
dx (ϕ,ψ ∈ H1

0 (Ω)). (16.69)
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Making use of the isomorphism Φ : H1
0 (Ω) → H−1(Ω) given by (16.12) or

(16.47), we obtain

‖L[u]‖H−1 = ‖Φ−1L[u]‖H1
0

(u ∈ H1
0 (Ω)).

Since, moreover, Φ−1L is 〈·, ·〉H1
0
-symmetric by (16.69) and (16.13), and

defined on the whole Hilbert space H1
0 (Ω), and hence self-adjoint , we find

that (16.68) holds for any

K ≥ [min {|λ| : λ is in the spectrum of Φ−1L}]−1, (16.70)

provided that the min is positive (which is clearly an unavoidable condition
for Φ−1L being invertible with bounded inverse). Thus, in order to compute
K, bounds are needed for:

(I) the essential spectrum of Φ−1L (i.e., accumulation points of the spec-
trum, and eigenvalues of infinite multiplicity), and

(II) the isolated eigenvalues of Φ−1L of finite multiplicity, more precisely
those neighbouring 0.

With regard to (I), if Ω is unbounded, we suppose again that ũ is given
in the form (16.63), with some bounded Lipschitz domain Ω0 ⊂ Ω. If Ω is
bounded, we may assume the same, simply choosing Ω0 := Ω (and ũ0 := ũ).

Now define L0 : H1
0 (Ω) → H−1(Ω) by (16.69), but with (∂f/∂y)(x, ũ(x))

replaced by (∂f/∂y)(x, 0). Using the Sobolev–Kondrachov–Rellich Embed-
ding Theorem (Adams 1975), implying the compactness of the embedding
H1(Ω0) ↪→ L2(Ω0), we find that Φ−1L − Φ−1L0 : H1

0 (Ω) → H1
0 (Ω) is com-

pact. Therefore, the perturbation result given in Kato (1966, IV, Theo-
rem 5.35) shows that the essential spectra of Φ−1L and Φ−1L0 coincide.
Thus, being left with the computation of bounds for the essential spectrum
of Φ−1L0, one can use Fourier transform methods, for instance, if Ω = R

n

and (∂f/∂y)(·, 0) is constant, or Floquet theory if (∂f/∂y)(·, 0) is periodic.
Alternatively, if

∂f

∂y
(x, 0) ≥ c0 > −ρ∗ (x ∈ Ω), (16.71)

with ρ∗ ∈ [0,∞) denoting the minimal point of the spectrum of −∆ on
H1

0 (Ω), we obtain by straightforward estimates of the Rayleigh quotient that
the (full) spectrum of Φ−1L0, and thus in particular the essential spectrum,
is bounded from below by min{1, (c0 + ρ∗)/(σ + ρ∗)}.

With regard to (II), for computing bounds to eigenvalues of Φ−1L, the
parameter σ in the H1

0 -product (16.44) is chosen such that

σ >
∂f

∂y
(x, ũ(x)) (x ∈ Ω). (16.72)



Verification methods 435

Thus, the right-hand side of (16.72) is assumed to be bounded above. Fur-
thermore, assume that the infimum s0 of the essential spectrum of Φ−1L is
positive, which is true, e.g., if (16.71) holds. As a particular consequence of
(16.72) (and (16.47)) we obtain that s0 ≤ 1 and all eigenvalues of Φ−1L are
less than 1, and that, via the transformation κ = 1/(1− λ), the eigenvalue
problem Φ−1L[u] = λu is equivalent to

−∆u+ σu = κ

(
σ − ∂f

∂y
(·, ũ)

)
u (16.73)

(to be understood as an equation in H−1(Ω)), which is furthermore equiv-
alent to the eigenvalue problem for the self-adjoint operator

R := (IH1
0 (Ω) − Φ−1L)−1.

Thus, defining the essential spectrum of problem (16.73) to be that of R,
we find that it is bounded from below by 1/(1− s0) if s0 < 1, and is empty
if s0 = 1. In particular, its infimum is larger than 1, since s0 > 0 by
assumption.

Therefore, the computer-assisted eigenvalue enclosure methods mentioned
in Section 16.2.3 (which are also applicable to eigenvalues below the essential
spectrum of a problem like (16.73); see Zimmermann and Mertins (1995))
can be used to enclose the eigenvalue(s) of problem (16.73) neighbouring 1
(if they exist), whence by the transformation κ = 1/(1 − λ) enclosures for
the eigenvalue(s) of Φ−1L neighbouring 0 are obtained (if they exist). Also
taking s0 into account, the desired constant K can now easily be computed
via (16.70). (Note that K = s−1

0 can be chosen if no eigenvalues below the
essential spectrum exist.)

16.3.4. Local Lipschitz bound g for F ′

In the setting (16.43), (16.55), condition (16.8) now reads∣∣∣∣
∫

Ω

[
∂f

∂y
(x, ũ(x)+u(x))−∂f

∂y
(x, ũ(x))

]
v(x)ϕ(x) dx

∣∣∣∣ ≤ g(‖u‖H1
0
)‖v‖H1

0
‖ϕ‖H1

0

(16.74)
for all u, v, ϕ ∈ H1

0 (Ω). Here, we assumed that the Fréchet derivative of G
(defined in (16.56)) is given by (16.61), which is true, under the growth con-
ditions (16.57)–(16.60), for example, and which we assume in the following.

As in the strong solution approach treated in Section 16.2, we start with
a monotonically non-decreasing function g̃ : [0,∞) → [0,∞) satisfying∣∣∣∣∂f∂y (x, ũ(x) + y)− ∂f

∂y
(x, ũ(x))

∣∣∣∣ ≤ g̃(|y|) for all x ∈ Ω, y ∈ R, (16.75)

and g̃(t) → 0 as t → 0+, but now we require in addition that g̃(t1/r) is a
concave function of t. Here, r := r2 is the (larger) exponent in (16.59).
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In practice, g̃ can often be taken to have the form

g̃(t) =
N∑

j=1

ajt
µj (0 ≤ t <∞),

where a1, . . . , aN > 0 and µ1, . . . , µN ∈ (0, r] are arranged in order to satisfy
(16.75).

According to (16.60), one can find some

q ∈ (1,∞) if n = 2, q ∈
[n
2
,∞

)
if n ≥ 3, (16.76)

such that qr is in the range (16.50). Since (16.76) implies that p := 2q/(q−1)
is also in the range (16.50), both the embeddings H1

0 (Ω) ↪→ Lqr(Ω) and
H1

0 (Ω) ↪→ Lp(Ω) are bounded.
Using in addition the concavity of ψ(t) := g̃(t1/r) and Jensen’s inequality

(Bauer 1978), one can now prove that (16.74) holds for

g(t) := C2
2 · g̃

(
Cqr(Cp/C2)

2
r t
)

(0 ≤ t <∞) (16.77)

(Plum 2008), which also satisfies (16.9) and is non-decreasing.

16.3.5. A numerical example
We consider the problem of finding non-trivial solutions to the nonlinear
Schrödinger equation

−∆u+ V (x)u− u2 = 0 on Ω := R
2, (16.78)

where V (x) = A + B sin(π(x1 + x2)) sin(π(x1 − x2)), with real parameters
A and B. The results presented here have been obtained by B. Breuer,
P. J. McKenna and M. Plum (unpublished).

We are interested only in solutions which are symmetric with respect to
reflection about both coordinate axes. Thus, we include these symmetries
in all function spaces used, and in the numerical approximation spaces.

The particular case A = 6, B = 2 is treated. On a ‘computational’
domain Ω0 := (−�, �)× (−�, �), an approximation ũ0 ∈ H2(Ω0)∩H1

0 (Ω0) of
the differential equation in (16.78) was computed, with Dirichlet boundary
conditions on ∂Ω0, in a finite Fourier series form like (16.24) (with N =
M = 80).

To find ũ0, we start with a non-trivial approximate solution for Emden’s
equation (which is (16.78) with A = B = 0) on Ω0, and perform a path-
following Newton method, deforming (A,B) from (0, 0) into (6, 2).

In the single Newton steps, a collocation method with equidistant collo-
cation points is used. By increasing the side length of Ω0 in an additional
path following, the approximation ũ0 remains ‘stable’, with rapidly decreas-
ing normal derivative ∂ũ0/∂ν0 (on ∂Ω0), as � increases; this gives rise to
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some hope that a ‘good’ approximation ũ for problem (16.78) is obtained
in the form (16.63).

For � = 8, ‖∂ũ0/∂ν0‖L2(∂Ω0) turned out to be small enough compared
with ‖ −∆ũ0 + V ũ0 − ũ2

0‖L2(Ω0), and a defect bound δ (satisfying (16.64))
is computed via (16.67) as

δ = 0.7102 · 10−2; (16.79)

note that, by the results mentioned in the appendix of Plum (2008),

C2 = σ−
1
2 , and Ctr = σ−

1
2
[
�−1 + +

√
�−2 + 2σ

] 1
2 .

Moreover, (16.72) requires σ > A + B = 8 (since ũ turns out to be non-
negative). Choosing σ := 9, we obtain C2 ≤ 0.3334 and Ctr ≤ 0.6968.

Since condition (16.71) holds for c0 = A − B = 4 (and ρ∗ = 0), the
arguments following (16.71) give the lower bound s0 := 4/9 ≥ 0.4444 for
the essential spectrum of Φ−1L, and hence the lower bound 1/(1−s0) = 1.8
for the essential spectrum of problem (16.73).

By the eigenvalue enclosure methods mentioned in Section 16.2.3, the
bounds

κ1 ≤ 0.5293, κ2 ≥ 1.1769

for the first two eigenvalues of problem (16.73) could be computed, which
by (16.70) leads to the constant

K = 6.653 (16.80)

satisfying (16.68). To compute g satisfying (16.8) or (16.74), we first note
that (16.75) holds for

g̃(t) := 2t,

and (16.59) for r1 = r2 = 1, whence the additional concavity condition
is satisfied. Choosing q := 2 yields qr = 2 and p = 4 in the arguments
following (16.76), whence (16.77) gives

g(t) = 2C2C
2
4 t =

1
9
t (16.81)

since 2C2C
2
4 = σ−1 by Lemma 2a) in the appendix of Plum (2008).

Using (16.79)–(16.81), it follows that (16.14) and (16.15) hold for α =
0.04811, whence Theorem 16.1 implies the existence of a solution u∗ ∈
H1

0 (R2) to problem (16.78) with

‖u∗ − ũ‖H1
0
≤ 0.04811. (16.82)

It is easy to check on the basis of the numerical data that ‖ũ‖H1
0
> 0.04811,

whence (16.82) shows in particular that u∗ is non-trivial.
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Figure 16.2. Example (16.78); A = 6, B = 2 (left)
and A = 6, B = 26 (right).

We wish to remark that it would be of great interest to achieve such
results also for cases where 0 < A < B in the potential V , because in
this case V is no longer non-negative, which excludes an important class of
purely analytical approaches to prove existence of a non-trivial solution.

So far, verification has not been successful for such cases, due to difficulties
in the homotopy method that has to be used for our computer-assisted
eigenvalue enclosures (see the brief remarks in Section 16.2.3); note that
these difficulties occur on a rather ‘technical’ level. However, an apparently
‘good’ approximation ũ, e.g., in the case A = 6, B = 26, could be computed.

Figure 16.2 shows plots of ũ for the successful case A = 6, B = 2, and for
the unsuccessful case A = 6, B = 26.
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M. Daumas, G. Melquiond and C. Muñoz (2005), Guaranteed proofs using in-
terval arithmetic. In Proc. 17th IEEE Symposium on Computer Arithmetic
(ARITH’05).

T. J. Dekker (1971), ‘A floating-point technique for extending the available preci-
sion’, Numer. Math. 18, 224–242.

J. B. Demmel (1989), On floating point errors in Cholesky. LAPACK Working
Note 14 CS-89-87, Department of Computer Science, University of Tennessee,
Knoxville, TN, USA.

J. B. Demmel, B. Diament and G. Malajovich (2001), ‘On the complexity of com-
puting error bounds’, Found. Comput. Math. 1, 101–125.

J. B. Demmel, I. Dumitriu, O. Holtz and P. Koev (2008), Accurate and efficient ex-
pression evaluation and linear algebra. In Acta Numerica, Vol. 17, Cambridge
University Press, pp. 87–145.

J. B. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee and E. J. Riedy (2004),
Error bounds from extra precise iterative refinement. Report no. ucb/csd-04-
1344, Computer Science Devision (EECS), University of California, Berkeley.

P. S. Dwyer (1951), Linear Computations, Wiley, New York/London.
C. Eckart and G. Young (1936), ‘The approximation of one matrix by another of

lower rank’, Psychometrika 1, 211–218.
J.-P. Eckmann, H. Koch and P. Wittwer (1984), ‘A computer-assisted proof of

universality for area-preserving maps’, Mem. Amer. Math. Soc. 47, 289.
P. Eijgenraam (1981), The solution of initial value problems using interval arith-

metic.
B. Fazekas, M. Plum and C. Wieners (2005), Enclosure for biharmonic equation.

In Dagstuhl Online Seminar Proceedings 05391.
http://drops.dagstuhl.de/portal/05391/.

L. H. de Figueiredo and J. Stolfi (2004), ‘Affine arithmetic: Concepts and applica-
tions’, Numer. Algorithms 37, 147–158.

L. V. Foster (1994), ‘Gaussian elimination with partial pivoting can fail in practice’,
SIAM J. Matrix Anal. Appl. 14, 1354–1362.
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